enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. 1/2 + 1/4 + 1/8 + 1/16 + ⋯ - ⋯ - Wikipedia

    en.wikipedia.org/wiki/1/2_%2B_1/4_%2B_1/8_%2B_1/...

    The geometric series on the real line. In mathematics, the infinite series ⁠ 1 / 2 ⁠ + ⁠ 1 / 4 ⁠ + ⁠ 1 / 8 ⁠ + ⁠ 1 / 16 ⁠ + ··· is an elementary example of a geometric series that converges absolutely. The sum of the series is 1. In summation notation, this may be expressed as

  3. 1/4 + 1/16 + 1/64 + 1/256 + ⋯ - ⋯ - Wikipedia

    en.wikipedia.org/wiki/1/4_%2B_1/16_%2B_1/64_%2B...

    The same geometric strategy also works for triangles, as in the figure on the right: [4] if the large triangle has area 1, then the largest black triangle has area ⁠ 1 / 4 ⁠, and so on. The figure as a whole has a self-similarity between the large triangle and its upper sub-triangle.

  4. Geometric progression - Wikipedia

    en.wikipedia.org/wiki/Geometric_progression

    A geometric progression, also known as a geometric sequence, is a mathematical sequence of non-zero numbers where each term after the first is found by multiplying the previous one by a fixed number called the common ratio. For example, the sequence 2, 6, 18, 54, ... is a geometric progression with a common ratio of 3.

  5. Geometric series - Wikipedia

    en.wikipedia.org/wiki/Geometric_series

    The geometric series is an infinite series derived from a special type of sequence called a geometric progression.This means that it is the sum of infinitely many terms of geometric progression: starting from the initial term , and the next one being the initial term multiplied by a constant number known as the common ratio .

  6. List of mathematical series - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_series

    An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.

  7. Arithmetico-geometric sequence - Wikipedia

    en.wikipedia.org/wiki/Arithmetico-geometric_sequence

    The nth element of an arithmetico-geometric sequence is the product of the nth element of an arithmetic sequence and the nth element of a geometric sequence. [1] An arithmetico-geometric series is a sum of terms that are the elements of an arithmetico-geometric sequence. Arithmetico-geometric sequences and series arise in various applications ...

  8. Series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Series_(mathematics)

    A famous example of an application of this test is the alternating harmonic series = + = + +, which is convergent per the alternating series test (and its sum is equal to ⁡), though the series formed by taking the absolute value of each term is the ordinary harmonic series, which is divergent.

  9. 1 + 2 + 4 + 8 + ⋯ - ⋯ - Wikipedia

    en.wikipedia.org/wiki/1_%2B_2_%2B_4_%2B_8_%2B_%E...

    A similar phenomenon occurs with the divergent geometric series + + (Grandi's series), where a series of integers appears to have the non-integer sum . These examples illustrate the potential danger in applying similar arguments to the series implied by such recurring decimals as 0.111 … {\displaystyle 0.111\ldots } and most notably 0.999 ...

  1. Related searches sum of geometric series example problems with answers free pdf editor adobe

    geometric series mathsgeometric series wikipedia
    geometric series formulageometric series proof