Search results
Results from the WOW.Com Content Network
In mathematics, exponentiation, denoted b n, is an operation involving two numbers: the base, b, and the exponent or power, n. [1] When n is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, b n is the product of multiplying n bases: [1] = ⏟.
For n greater than about 4 this is computationally more efficient than naively multiplying the base with itself repeatedly. Each squaring results in approximately double the number of digits of the previous, and so, if multiplication of two d -digit numbers is implemented in O( d k ) operations for some fixed k , then the complexity of ...
The Natural Area Code, this is the smallest base such that all of 1 / 2 to 1 / 6 terminate, a number n is a regular number if and only if 1 / n terminates in base 30. 32: Duotrigesimal: Found in the Ngiti language. 33: Use of letters (except I, O, Q) with digits in vehicle registration plates of Hong Kong. 34
In mathematics, a generating function is a representation of an infinite sequence of numbers as the coefficients of a formal power series.Generating functions are often expressed in closed form (rather than as a series), by some expression involving operations on the formal series.
Sometimes, multiplication symbols are replaced with either a dot or center-dot, so that x × y is written as either x. y or x · y . Plain text , programming languages , and calculators also use a single asterisk to represent the multiplication symbol, [ 6 ] and it must be explicitly used; for example, 3 x is written as 3 * x .
In mathematics, an algebraic expression is an expression built up from constants (usually, algebraic numbers) variables, and the basic algebraic operations: addition (+), subtraction (-), multiplication (×), division (÷), whole number powers, and roots (fractional powers).
In mathematics, an expansion of a product of sums expresses it as a sum of products by using the fact that multiplication distributes over addition. Expansion of a polynomial expression can be obtained by repeatedly replacing subexpressions that multiply two other subexpressions, at least one of which is an addition, by the equivalent sum of products, continuing until the expression becomes a ...
Where a power of ten has different names in the two conventions, the long scale name is shown in parentheses. The positive 10 power related to a short scale name can be determined based on its Latin name-prefix using the following formula: 10 [(prefix-number + 1) × 3] Examples: billion = 10 [(2 + 1) × 3] = 10 9; octillion = 10 [(8 + 1) × 3 ...