enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Zygosity - Wikipedia

    en.wikipedia.org/wiki/Zygosity

    A cell is said to be homozygous for a particular gene when identical alleles of the gene are present on both homologous chromosomes. [2] An individual that is homozygous-dominant for a particular trait carries two copies of the allele that codes for the dominant trait. This allele, often called the "dominant allele", is normally represented by ...

  3. Dominance (genetics) - Wikipedia

    en.wikipedia.org/wiki/Dominance_(genetics)

    Autosomal dominant and autosomal recessive inheritance, the two most common Mendelian inheritance patterns. An autosome is any chromosome other than a sex chromosome.. In genetics, dominance is the phenomenon of one variant of a gene on a chromosome masking or overriding the effect of a different variant of the same gene on the other copy of the chromosome.

  4. Genotype - Wikipedia

    en.wikipedia.org/wiki/Genotype

    In the example on the right, both parents are heterozygous, with a genotype of Bb. The offspring can inherit a dominant allele from each parent, making them homozygous with a genotype of BB. The offspring can inherit a dominant allele from one parent and a recessive allele from the other parent, making them heterozygous with a genotype of Bb.

  5. Test cross - Wikipedia

    en.wikipedia.org/wiki/Test_cross

    Under the law of dominance in genetics, an individual expressing a dominant phenotype could contain either two copies of the dominant allele (homozygous dominant) or one copy of each dominant and recessive allele (heterozygous dominant). [1] By performing a test cross, one can determine whether the individual is heterozygous or homozygous ...

  6. Mendelian inheritance - Wikipedia

    en.wikipedia.org/wiki/Mendelian_inheritance

    In a dominant-recessive inheritance, an average of 25% are homozygous with the dominant trait, 50% are heterozygous showing the dominant trait in the phenotype (genetic carriers), 25% are homozygous with the recessive trait and therefore express the recessive trait in the phenotype. The genotypic ratio is 1: 2 : 1, and the phenotypic ratio is 3: 1.

  7. Monohybrid cross - Wikipedia

    en.wikipedia.org/wiki/Monohybrid_cross

    Figure 1: Inheritance pattern of dominant (red) and recessive (white) phenotypes when each parent (1) is homozygous for either the dominant or recessive trait. All members of the F 1 generation are heterozygous and share the same dominant phenotype (2), while the F 2 generation exhibits a 6:2 ratio of dominant to recessive phenotypes (3).

  8. X-linked recessive inheritance - Wikipedia

    en.wikipedia.org/wiki/X-linked_recessive_inheritance

    X-linked recessive inheritance. X-linked recessive inheritance is a mode of inheritance in which a mutation in a gene on the X chromosome causes the phenotype to be always expressed in males (who are necessarily hemizygous for the gene mutation because they have one X and one Y chromosome) and in females who are homozygous for the gene mutation, see zygosity.

  9. Pseudodominance - Wikipedia

    en.wikipedia.org/wiki/Pseudodominance

    The pattern of inheritance in which a single recessive allele is inherited but is still expressed is known as pseudodominance. This mainly occurs with sex-linked genes (i.e., those on the sex chromosomes). The homogametic sex (females in humans) receive two of each sex chromosome and therefore need to be homozygous to show a recessive trait.