enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Moment of inertia - Wikipedia

    en.wikipedia.org/wiki/Moment_of_inertia

    There is an interesting difference in the way moment of inertia appears in planar and spatial movement. Planar movement has a single scalar that defines the moment of inertia, while for spatial movement the same calculations yield a 3 × 3 matrix of moments of inertia, called the inertia matrix or inertia tensor. [6] [7]

  3. Physical simulation - Wikipedia

    en.wikipedia.org/wiki/Physical_simulation

    where is the central inertia tensor, is the angular velocity vector, and is the moment of the jth external force about the mass center. The inertia tensor describes the location of each particle of mass in a given object in relation to the object's center of mass.

  4. List of moments of inertia - Wikipedia

    en.wikipedia.org/wiki/List_of_moments_of_inertia

    The moments of inertia of a mass have units of dimension ML 2 ([mass] × [length] 2). It should not be confused with the second moment of area, which has units of dimension L 4 ([length] 4) and is used in beam calculations. The mass moment of inertia is often also known as the rotational inertia, and sometimes as the angular mass.

  5. Inertia - Wikipedia

    en.wikipedia.org/wiki/Inertia

    Inertia is the natural tendency of objects in motion to stay in motion and objects at rest to stay at rest, unless a force causes the velocity to change. It is one of the fundamental principles in classical physics , and described by Isaac Newton in his first law of motion (also known as The Principle of Inertia). [ 1 ]

  6. Poinsot's ellipsoid - Wikipedia

    en.wikipedia.org/wiki/Poinsot's_ellipsoid

    The rigid body's motion is entirely determined by the motion of its inertia ellipsoid, which is rigidly fixed to the rigid body like a coordinate frame. Its inertia ellipsoid rolls, without slipping, on the invariable plane , with the center of the ellipsoid a constant height above the plane.

  7. Rigid rotor - Wikipedia

    en.wikipedia.org/wiki/Rigid_rotor

    A rigid body can be (partially) characterized by the three eigenvalues of its moment of inertia tensor, which are real nonnegative values known as principal moments of inertia. In microwave spectroscopy—the spectroscopy based on rotational transitions—one usually classifies molecules (seen as rigid rotors) as follows: spherical rotors

  8. Symmetric tensor - Wikipedia

    en.wikipedia.org/wiki/Symmetric_tensor

    The vectors appearing in this minimal expression are the principal axes of the tensor, and generally have an important physical meaning. For example, the principal axes of the inertia tensor define the Poinsot's ellipsoid representing the moment of inertia. Also see Sylvester's law of inertia. For symmetric tensors of arbitrary order k ...

  9. Cartesian tensor - Wikipedia

    en.wikipedia.org/wiki/Cartesian_tensor

    A dyadic tensor T is an order-2 tensor formed by the tensor product ⊗ of two Cartesian vectors a and b, written T = a ⊗ b.Analogous to vectors, it can be written as a linear combination of the tensor basis e x ⊗ e x ≡ e xx, e x ⊗ e y ≡ e xy, ..., e z ⊗ e z ≡ e zz (the right-hand side of each identity is only an abbreviation, nothing more):