enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Whitehead theorem - Wikipedia

    en.wikipedia.org/wiki/Whitehead_theorem

    For instance, take X= S 2 × RP 3 and Y= RP 2 × S 3. Then X and Y have the same fundamental group, namely the cyclic group Z/2, and the same universal cover, namely S 2 × S 3; thus, they have isomorphic homotopy groups. On the other hand their homology groups are different (as can be seen from the Künneth formula); thus, X and Y are not ...

  3. CW complex - Wikipedia

    en.wikipedia.org/wiki/CW_complex

    CW complexes satisfy the Whitehead theorem: a map between CW complexes is a homotopy equivalence if and only if it induces an isomorphism on all homotopy groups. A covering space of a CW complex is also a CW complex. [13] The product of two CW complexes can be made into a CW complex.

  4. Homotopy groups of spheres - Wikipedia

    en.wikipedia.org/wiki/Homotopy_groups_of_spheres

    In this table, the entries are either a) the trivial group 0, the infinite cyclic group Z, b) the finite cyclic groups of order n (written as Z n), or c) the direct products of such groups (written, for example, as Z 24 ×Z 3 or Z 2 2 = Z 2 ×Z 2). Extended tables of homotopy groups of spheres are given at the end of the article.

  5. Whitehead's lemma (Lie algebra) - Wikipedia

    en.wikipedia.org/wiki/Whitehead's_lemma_(Lie...

    In homological algebra, Whitehead's lemmas (named after J. H. C. Whitehead) represent a series of statements regarding representation theory of finite-dimensional, semisimple Lie algebras in characteristic zero. Historically, they are regarded as leading to the discovery of Lie algebra cohomology. [1]

  6. Homotopy theory - Wikipedia

    en.wikipedia.org/wiki/Homotopy_theory

    Remarkably, Whitehead's theorem says that for CW complexes, a weak homotopy equivalence and a homotopy equivalence are the same thing. Another important result is the approximation theorem. First, the homotopy category of spaces is the category where an object is a space but a morphism is the homotopy class of a map. Then

  7. Betti number - Wikipedia

    en.wikipedia.org/wiki/Betti_number

    In algebraic topology, the Betti numbers are used to distinguish topological spaces based on the connectivity of n-dimensional simplicial complexes.For the most reasonable finite-dimensional spaces (such as compact manifolds, finite simplicial complexes or CW complexes), the sequence of Betti numbers is 0 from some point onward (Betti numbers vanish above the dimension of a space), and they ...

  8. Spanier–Whitehead duality - Wikipedia

    en.wikipedia.org/wiki/Spanier–Whitehead_duality

    In mathematics, Spanier–Whitehead duality is a duality theory in homotopy theory, based on a geometrical idea that a topological space X may be considered as dual to its complement in the n-sphere, where n is large enough. Its origins lie in Alexander duality theory, in homology theory, concerning complements in manifolds.

  9. Hopf invariant - Wikipedia

    en.wikipedia.org/wiki/Hopf_invariant

    Theorem: The map : is a homomorphism. If is odd, is trivial (since () is torsion). If is even, the image of contains .Moreover, the image of the Whitehead product of identity maps equals 2, i. e. ([,]) =, where : is the identity map and [,] is the Whitehead product.