Search results
Results from the WOW.Com Content Network
Given a description of the possible initial states of the world, a description of the desired goals, and a description of a set of possible actions, the planning problem is to synthesize a plan that is guaranteed (when applied to any of the initial states) to generate a state which contains the desired goals (such a state is called a goal state).
The multidimensional assignment problem (MAP) is a fundamental combinatorial optimization problem which was introduced by William Pierskalla. [1] This problem can be seen as a generalization of the linear assignment problem. [2] In words, the problem can be described as follows:
A minimum spanning tree of a weighted planar graph.Finding a minimum spanning tree is a common problem involving combinatorial optimization. Combinatorial optimization is a subfield of mathematical optimization that consists of finding an optimal object from a finite set of objects, [1] where the set of feasible solutions is discrete or can be reduced to a discrete set.
Multi-task Bayesian optimization is a modern model-based approach that leverages the concept of knowledge transfer to speed up the automatic hyperparameter optimization process of machine learning algorithms. [8] The method builds a multi-task Gaussian process model on the data originating from different searches progressing in tandem. [9]
The method is mainly used for numerical optimization, although there are also variants for combinatorial tasks. [10] [11] [12] CMA-ES; Natural evolution strategy; Differential evolution – Based on vector differences and is therefore primarily suited for numerical optimization problems.
Quadratic unconstrained binary optimization (QUBO), also known as unconstrained binary quadratic programming (UBQP), is a combinatorial optimization problem with a wide range of applications from finance and economics to machine learning. [1]
Branch and bound (BB, B&B, or BnB) is a method for solving optimization problems by breaking them down into smaller sub-problems and using a bounding function to eliminate sub-problems that cannot contain the optimal solution. It is an algorithm design paradigm for discrete and combinatorial optimization problems, as well as mathematical ...
A particle swarm searching for the global minimum of a function. In computational science, particle swarm optimization (PSO) [1] is a computational method that optimizes a problem by iteratively trying to improve a candidate solution with regard to a given measure of quality.