Search results
Results from the WOW.Com Content Network
History of the function concept. The mathematical concept of a function dates from the 17th century in connection with the development of calculus; for example, the slope of a graph at a point was regarded as a function of the x -coordinate of the point. Functions were not explicitly considered in antiquity, but some precursors of the concept ...
Function. In mathematics, the graph of a function is the set of ordered pairs , where In the common case where and are real numbers, these pairs are Cartesian coordinates of points in a plane and often form a curve. The graphical representation of the graph of a function is also known as a plot. In the case of functions of two variables ...
In probability theory, a probability density function (PDF), density function, or density of an absolutely continuous random variable, is a function whose value at any given sample (or point) in the sample space (the set of possible values taken by the random variable) can be interpreted as providing a relative likelihood that the value of the ...
A complex-valued function of several real variables may be defined by relaxing, in the definition of the real-valued functions, the restriction of the codomain to the real numbers, and allowing complex values. If f(x1, …, xn) is such a complex valued function, it may be decomposed as. where g and h are real-valued functions.
The multivariate normal distribution is said to be "non-degenerate" when the symmetric covariance matrix is positive definite. In this case the distribution has density [5] where is a real k -dimensional column vector and is the determinant of , also known as the generalized variance.
In mathematics and computer science, graph theory is the study of graphs, which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of vertices (also called nodes or points) which are connected by edges (also called arcs, links or lines).
t. e. In mathematics, a function from a set X to a set Y assigns to each element of X exactly one element of Y. [1] The set X is called the domain of the function [2] and the set Y is called the codomain of the function. [3] Functions were originally the idealization of how a varying quantity depends on another quantity.
For a real-valued function of a single real variable, the derivative of a function at a point generally determines the best linear approximation to the function at that point. Differential calculus and integral calculus are connected by the fundamental theorem of calculus. This states that differentiation is the reverse process to integration.