enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Jacobi's formula - Wikipedia

    en.wikipedia.org/wiki/Jacobi's_formula

    In matrix calculus, Jacobi's formula expresses the derivative of the determinant of a matrix A in terms of the adjugate of A and the derivative of A. [ 1 ] If A is a differentiable map from the real numbers to n × n matrices, then

  3. Gradient theorem - Wikipedia

    en.wikipedia.org/wiki/Gradient_theorem

    Even if the gradient theorem (also called fundamental theorem of calculus for line integrals) has been proved for a differentiable (so looked as smooth) curve so far, the theorem is also proved for a piecewise-smooth curve since this curve is made by joining multiple differentiable curves so the proof for this curve is made by the proof per ...

  4. General Leibniz rule - Wikipedia

    en.wikipedia.org/wiki/General_Leibniz_rule

    This formula can be used to derive a formula that computes the symbol of the composition of differential operators. In fact, let P and Q be differential operators (with coefficients that are differentiable sufficiently many times) and R = P ∘ Q . {\displaystyle R=P\circ Q.}

  5. Exterior derivative - Wikipedia

    en.wikipedia.org/wiki/Exterior_derivative

    The exterior derivative of a differential form of degree k (also differential k-form, or just k-form for brevity here) is a differential form of degree k + 1.. If f is a smooth function (a 0-form), then the exterior derivative of f is the differential of f .

  6. Differential of a function - Wikipedia

    en.wikipedia.org/wiki/Differential_of_a_function

    In calculus, the differential represents the principal part of the change in a function = with respect to changes in the independent variable. The differential is defined by = ′ (), where ′ is the derivative of f with respect to , and is an additional real variable (so that is a function of and ).

  7. Fermat's theorem (stationary points) - Wikipedia

    en.wikipedia.org/wiki/Fermat's_theorem...

    Fermat's theorem is central to the calculus method of determining maxima and minima: in one dimension, one can find extrema by simply computing the stationary points (by computing the zeros of the derivative), the non-differentiable points, and the boundary points, and then investigating this set to determine the extrema.

  8. Gateaux derivative - Wikipedia

    en.wikipedia.org/wiki/Gateaux_derivative

    Furthermore, if is (complex) Gateaux differentiable at each with derivative (): (;) then is Fréchet differentiable on with Fréchet derivative . This is analogous to the result from basic complex analysis that a function is analytic if it is complex differentiable in an open set, and is a fundamental result in the study of infinite dimensional ...

  9. Directional derivative - Wikipedia

    en.wikipedia.org/wiki/Directional_derivative

    In multivariable calculus, the directional derivative measures the rate at which a function changes in a particular direction at a given point. [citation needed]The directional derivative of a multivariable differentiable (scalar) function along a given vector v at a given point x intuitively represents the instantaneous rate of change of the function, moving through x with a direction ...