Search results
Results from the WOW.Com Content Network
It may refer more specifically to two subcategories: Passband bandwidth is the difference between the upper and lower cutoff frequencies of, for example, a band-pass filter, a communication channel, or a signal spectrum. Baseband bandwidth is equal to the upper cutoff frequency of a low-pass filter or baseband signal, which includes a zero ...
At a SNR of 0 dB (Signal power = Noise power) the Capacity in bits/s is equal to the bandwidth in hertz. If the SNR is 20 dB, and the bandwidth available is 4 kHz, which is appropriate for telephone communications, then C = 4000 log 2 (1 + 100) = 4000 log 2 (101) = 26.63 kbit/s. Note that the value of S/N = 100 is equivalent to the SNR of 20 dB.
Bandwidth commonly measured in bits/second is the maximum rate that information can be transferred Throughput is the actual rate that information is transferred Latency the delay between the sender and the receiver decoding it, this is mainly a function of the signals travel time, and processing time at any nodes the information traverses
The basic mathematical model for a communication system is the following: Communication with feedback. Here is the formal definition of each element (where the only difference with respect to the nonfeedback capacity is the encoder definition): is the message to be transmitted, taken in an alphabet;
The consumed bandwidth in bit/s, corresponds to achieved throughput or goodput, i.e., the average rate of successful data transfer through a communication path.The consumed bandwidth can be affected by technologies such as bandwidth shaping, bandwidth management, bandwidth throttling, bandwidth cap, bandwidth allocation (for example bandwidth allocation protocol and dynamic bandwidth ...
OC-12 is a network line with transmission speeds of up to 622.08 Mbit/s (payload: 601.344 Mbit/s; overhead: 20.736 Mbit/s).. OC-12 lines were commonly used by ISPs as wide area network (WAN) connections, or connecting xDSL customers to a larger internal network [3]
Spectral efficiency, spectrum efficiency or bandwidth efficiency refers to the information rate that can be transmitted over a given bandwidth in a specific communication system. It is a measure of how efficiently a limited frequency spectrum is utilized by the physical layer protocol, and sometimes by the medium access control (the channel ...
Carson's bandwidth rule is often applied to transmitters, antennas, optical sources, receivers, photodetectors, and other communications system components. Any frequency modulated signal will have an infinite number of sidebands and hence an infinite bandwidth but, in practice, all significant sideband energy (98% or more) is concentrated ...