enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Empirical probability - Wikipedia

    en.wikipedia.org/wiki/Empirical_probability

    In probability theory and statistics, the empirical probability, relative frequency, or experimental probability of an event is the ratio of the number of outcomes in which a specified event occurs to the total number of trials, [1] i.e. by means not of a theoretical sample space but of an actual experiment.

  3. Empirical measure - Wikipedia

    en.wikipedia.org/wiki/Empirical_measure

    In probability theory, an empirical measure is a random measure arising from a particular realization of a (usually finite) sequence of random variables. The precise definition is found below. The precise definition is found below.

  4. Probability distribution - Wikipedia

    en.wikipedia.org/wiki/Probability_distribution

    In probability theory and statistics, a probability distribution is the mathematical function that gives the probabilities of occurrence of possible outcomes for an experiment. [1] [2] It is a mathematical description of a random phenomenon in terms of its sample space and the probabilities of events (subsets of the sample space). [3]

  5. Empirical statistical laws - Wikipedia

    en.wikipedia.org/wiki/Empirical_statistical_laws

    The Pareto principle is a popular example of such a "law". It states that roughly 80% of the effects come from 20% of the causes, and is thus also known as the 80/20 rule. [2] In business, the 80/20 rule says that 80% of your business comes from just 20% of your customers. [3]

  6. Sample mean and covariance - Wikipedia

    en.wikipedia.org/wiki/Sample_mean_and_covariance

    The sample (2, 1, 0), for example, would have a sample mean of 1. If the statistician is interested in K variables rather than one, each observation having a value for each of those K variables, the overall sample mean consists of K sample means for individual variables.

  7. Realization (probability) - Wikipedia

    en.wikipedia.org/wiki/Realization_(probability)

    In more formal probability theory, a random variable is a function X defined from a sample space Ω to a measurable space called the state space. [ 2 ] [ a ] If an element in Ω is mapped to an element in state space by X , then that element in state space is a realization.

  8. Law of large numbers - Wikipedia

    en.wikipedia.org/wiki/Law_of_large_numbers

    It follows from the law of large numbers that the empirical probability of success in a series of Bernoulli trials will converge to the theoretical probability. For a Bernoulli random variable , the expected value is the theoretical probability of success, and the average of n such variables (assuming they are independent and identically ...

  9. Glivenko–Cantelli theorem - Wikipedia

    en.wikipedia.org/wiki/Glivenko–Cantelli_theorem

    In the theory of probability, the Glivenko–Cantelli theorem (sometimes referred to as the Fundamental Theorem of Statistics), named after Valery Ivanovich Glivenko and Francesco Paolo Cantelli, describes the asymptotic behaviour of the empirical distribution function as the number of independent and identically distributed observations grows. [1]