enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Determinant - Wikipedia

    en.wikipedia.org/wiki/Determinant

    In mathematics, the determinant is a scalar-valued function of the entries of a square matrix. The determinant of a matrix A is commonly denoted det(A), det A, or | A |. Its value characterizes some properties of the matrix and the linear map represented, on a given basis, by the matrix.

  3. Minor (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Minor_(linear_algebra)

    Let A be an m × n matrix and k an integer with 0 < k ≤ m, and k ≤ n.A k × k minor of A, also called minor determinant of order k of A or, if m = n, the (n − k) th minor determinant of A (the word "determinant" is often omitted, and the word "degree" is sometimes used instead of "order") is the determinant of a k × k matrix obtained from A by deleting m − k rows and n − k columns.

  4. Jacobian matrix and determinant - Wikipedia

    en.wikipedia.org/.../Jacobian_matrix_and_determinant

    When this matrix is square, that is, when the function takes the same number of variables as input as the number of vector components of its output, its determinant is referred to as the Jacobian determinant. Both the matrix and (if applicable) the determinant are often referred to simply as the Jacobian in literature. [4]

  5. Matrix determinant lemma - Wikipedia

    en.wikipedia.org/wiki/Matrix_determinant_lemma

    The determinant of the left hand side is the product of the determinants of the three matrices. Since the first and third matrix are triangular matrices with unit diagonal, their determinants are just 1. The determinant of the middle matrix is our desired value. The determinant of the right hand side is simply (1 + v T u). So we have the result:

  6. Hadamard's maximal determinant problem - Wikipedia

    en.wikipedia.org/wiki/Hadamard's_maximal...

    This matrix has elements 0 and −2. (The determinant of this submatrix is the same as that of the original matrix, as can be seen by performing a cofactor expansion on column 1 of the matrix obtained in Step 1.) Divide the submatrix by −2 to obtain a {0, 1} matrix. (This multiplies the determinant by (−2) 1−n.) Example:

  7. Orthogonal matrix - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_matrix

    Permutation matrices are simpler still; they form, not a Lie group, but only a finite group, the order n! symmetric group S n. By the same kind of argument, S n is a subgroup of S n + 1. The even permutations produce the subgroup of permutation matrices of determinant +1, the order ⁠ n! / 2 ⁠ alternating group.

  8. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    The determinant of this matrix is −1, as the area of the green parallelogram at the right is 1, but the map reverses the orientation, since it turns the counterclockwise orientation of the vectors to a clockwise one. The determinant of a square matrix A (denoted det(A) or | A |) is a number encoding

  9. Second partial derivative test - Wikipedia

    en.wikipedia.org/wiki/Second_partial_derivative_test

    For functions of three or more variables, the determinant of the Hessian does not provide enough information to classify the critical point, because the number of jointly sufficient second-order conditions is equal to the number of variables, and the sign condition on the determinant of the Hessian is only one of the conditions.