Search results
Results from the WOW.Com Content Network
The thrust-to-weight ratio is usually calculated from initial gross weight at sea level on earth [6] and is sometimes called thrust-to-Earth-weight ratio. [7] The thrust-to-Earth-weight ratio of a rocket or rocket-propelled vehicle is an indicator of its acceleration expressed in multiples of earth's gravitational acceleration, g 0. [5]
A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...
For vertical launch of a rocket the initial thrust at liftoff must be more than the weight. Each of the three Space Shuttle Main Engines could produce a thrust of 1.8 meganewton , and each of the Space Shuttle's two Solid Rocket Boosters 14.7 MN (3,300,000 lbf ), together 29.4 MN.
In rocketry, a heavier engine with a higher specific impulse may not be as effective in gaining altitude, distance, or velocity as a lighter engine with a lower specific impulse, especially if the latter engine possesses a higher thrust-to-weight ratio. This is a significant reason for most rocket designs having multiple stages.
On earth, weight is fairly easy to calculate: = In this equation, m represents the mass of the object and g is the acceleration that is produced by gravity. On earth, this value is approximately 9.8 m/s squared. When the force for lift is greater than the force of weight, the aircraft accelerates upwards.
In aerospace engineering, mass ratio is a measure of the efficiency of a rocket. It describes how much more massive the vehicle is with propellant than without; ...
Flight dynamics is the science of air vehicle orientation and control in three dimensions. The three critical flight dynamics parameters are the angles of rotation in three dimensions about the vehicle's center of gravity (cg), known as pitch, roll and yaw.
Here the current thrust to weight ratio has been denoted by = / and the current angle between the velocity vector and the vertical by = (^), where = /. This results in a coupled system of equations which can be integrated to obtain the trajectory.