Search results
Results from the WOW.Com Content Network
Approximately 78% of Earth's atmosphere is N gas (N 2), which is an inert compound and biologically unavailable to most organisms.In order to be utilized in most biological processes, N 2 must be converted to reactive nitrogen (Nr), which includes inorganic reduced forms (NH 3 and NH 4 +), inorganic oxidized forms (NO, NO 2, HNO 3, N 2 O, and NO 3 −), and organic compounds (urea, amines, and ...
Nitrification is the biological oxidation of ammonia to nitrate via the intermediary nitrite. Nitrification is an important step in the nitrogen cycle in soil. The process of complete nitrification may occur through separate organisms [1] or entirely within one organism, as in comammox bacteria. The transformation of ammonia to nitrite is ...
Elevated nitrate in groundwater is a concern for drinking water use because nitrate can interfere with blood-oxygen levels in infants and cause methemoglobinemia or blue-baby syndrome. [28] Where groundwater recharges stream flow, nitrate-enriched groundwater can contribute to eutrophication , a process that leads to high algal population and ...
One process utilizes fast growing nitrifiers utilizing nitrification of ammonia to nitrite and Anammox which is the denitrification of nitrite to atmospheric nitrogen using ammonia as an electron donor. The combination of the two processes allows for a more efficient conversion of ammonia and prevents a buildup of nitrate in the water.
The Orbal process is a technology in practice today using this method. The other method is to produce an oxygen gradient within the bio floc. The DO concentration remains high in the outside rings of the floc where nitrification occurs but low in the inner rings of the floc where denitrification occurs.
Oxygen likely affects denitrification in multiple ways—because most denitrifiers are facultative, oxygen can inhibit rates, but it can also stimulate denitrification by facilitating nitrification and the production of nitrate. In wetlands as well as deserts, [21] moisture is an environmental limitation to rates of denitrification.
Ammonia-oxidizing bacteria (AOB), such as species of Nitrosomonas, oxidize ammonia (NH 3) to nitrite (NO − 2), a process termed nitrification. [26] Nitrite-oxidizing bacteria, especially Nitrobacter, oxidize nitrite (NO − 2) to nitrate (NO − 3), which is extremely soluble and mobile and is a major cause of eutrophication and algal bloom.
A nutrient cycle (or ecological recycling) is the movement and exchange of inorganic and organic matter back into the production of matter. Energy flow is a unidirectional and noncyclic pathway, whereas the movement of mineral nutrients is cyclic.