enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Erlangen program - Wikipedia

    en.wikipedia.org/wiki/Erlangen_program

    In particular, Euclidean geometry was more restrictive than affine geometry, which in turn is more restrictive than projective geometry. Klein proposed that group theory , a branch of mathematics that uses algebraic methods to abstract the idea of symmetry , was the most useful way of organizing geometrical knowledge; at the time it had already ...

  3. Geometry of Complex Numbers - Wikipedia

    en.wikipedia.org/wiki/Geometry_of_Complex_Numbers

    Geometry of Complex Numbers is an undergraduate textbook on geometry, whose topics include circles, the complex plane, inversive geometry, and non-Euclidean geometry. It was written by Hans Schwerdtfeger , and originally published in 1962 as Volume 13 of the Mathematical Expositions series of the University of Toronto Press .

  4. Theodosius' Spherics - Wikipedia

    en.wikipedia.org/wiki/Theodosius'_Spherics

    It has been speculated that this tradition of Greek "spherics" – founded in the axiomatic system and using the methods of proof of solid geometry exemplified by Euclid's Elements but extended with additional definitions relevant to the sphere – may have originated in a now-unknown work by Eudoxus, who probably established a two-sphere model ...

  5. Forum Geometricorum - Wikipedia

    en.wikipedia.org/wiki/Forum_Geometricorum

    Forum Geometricorum: A Journal on Classical Euclidean Geometry was a peer-reviewed open-access academic journal that specialized in mathematical research papers on Euclidean geometry. [ 1 ] Founded in 2001, it was published by Florida Atlantic University and was indexed by Mathematical Reviews [ 2 ] and Zentralblatt MATH . [ 3 ]

  6. Straightedge and compass construction - Wikipedia

    en.wikipedia.org/wiki/Straightedge_and_compass...

    In geometry, straightedge-and-compass construction – also known as ruler-and-compass construction, Euclidean construction, or classical construction – is the construction of lengths, angles, and other geometric figures using only an idealized ruler and a pair of compasses.

  7. List of books in computational geometry - Wikipedia

    en.wikipedia.org/wiki/List_of_books_in...

    The goal of the book is to provide a comprehensive introduction into methods and approached, rather than the cutting edge of the research in the field: the presented algorithms provide transparent and reasonably efficient solutions based on fundamental "building blocks" of computational geometry. [4] [5] The book consists of the following ...

  8. Henry Forder - Wikipedia

    en.wikipedia.org/wiki/Henry_Forder

    and that order axioms together with a continuity axiom and a Euclidean parallel axiom are the required foundation. The object achieved is a "continuous and rigorous development of the [Euclidean] doctrine in the light of modern investigations." [1] In 1929 Forder obtained drawings and notes of Robert William Genese on the exterior algebra of ...

  9. Foundations of geometry - Wikipedia

    en.wikipedia.org/wiki/Foundations_of_geometry

    Euclidean geometry is a mathematical system attributed to the Alexandrian Greek mathematician Euclid, which he described (although non-rigorously by modern standards) in his textbook on geometry: the Elements. Euclid's method consists in assuming a small set of intuitively appealing axioms, and deducing many other propositions from these.