Search results
Results from the WOW.Com Content Network
F.R. Larson and J. Miller proposed that creep rate could adequately be described by the Arrhenius type equation: r = A ⋅ e − Δ H / ( R ⋅ T ) {\displaystyle r=A\cdot e^{-\Delta H/(R\cdot T)}} Where r is the creep process rate, A is a constant, R is the universal gas constant , T is the absolute temperature , and Δ H {\displaystyle \Delta ...
The phenomenological equation which describes Harper–Dorn creep is = where ρ 0 is dislocation density (constant for Harper–Dorn creep), D v is the diffusivity through the volume of the material, G is the shear modulus and b is the Burgers vector, σ s, and n is the stress exponent which varies between 1 and 3.
The first constitutive equation (constitutive law) was developed by Robert Hooke and is known as Hooke's law.It deals with the case of linear elastic materials.Following this discovery, this type of equation, often called a "stress-strain relation" in this example, but also called a "constitutive assumption" or an "equation of state" was commonly used.
The FT is, however, more general than the Green–Kubo Relations because, unlike them, the FT applies to fluctuations far from equilibrium. In spite of this fact, no one has yet been able to derive the equations for nonlinear response theory from the FT. The FT does not imply or require that the distribution of time-averaged dissipation is ...
The constitutive relation is expressed as a linear first-order differential equation: = + ˙ This model represents a solid undergoing reversible, viscoelastic strain. Upon application of a constant stress, the material deforms at a decreasing rate, asymptotically approaching the steady-state strain.
Material failure theory is an interdisciplinary field of materials science and solid mechanics which attempts to predict the conditions under which solid materials fail under the action of external loads.
The present fluid phases are water, oil and gas, and they are represented by the subscript a = w,o,g respectively. The gravitational acceleration with direction is represented as or or . Notice that in petroleum engineering the spatial co-ordinate system is right-hand-oriented with z-axis pointing downward.
Chapman–Enskog theory provides a framework in which equations of hydrodynamics for a gas can be derived from the Boltzmann equation.The technique justifies the otherwise phenomenological constitutive relations appearing in hydrodynamical descriptions such as the Navier–Stokes equations.