Search results
Results from the WOW.Com Content Network
The reciprocal function: y = 1/x.For every x except 0, y represents its multiplicative inverse. The graph forms a rectangular hyperbola.. In mathematics, a multiplicative inverse or reciprocal for a number x, denoted by 1/x or x −1, is a number which when multiplied by x yields the multiplicative identity, 1.
Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.
An n × m rook's graph represents the moves of a rook on an n × m chessboard. [1] Its vertices represent the squares of the chessboard, and may be given coordinates (x, y), where 1 ≤ x ≤ n and 1 ≤ y ≤ m. Two vertices with coordinates (x 1, y 1) and (x 2, y 2) are adjacent if and only if either x 1 = x 2 or y 1 = y 2.
This is identical to the equation y = f(x) that defines the graph of f, except that the roles of x and y have been reversed. Thus the graph of f −1 can be obtained from the graph of f by switching the positions of the x and y axes. This is equivalent to reflecting the graph across the line y = x. [16] [1]
Graphs of y = b x for various bases b: base 10, base e, base 2, base 1 / 2 . Each curve passes through the point (0, 1) because any nonzero number raised to the power of 0 is 1. At x = 1, the value of y equals the base because any number raised to the power of 1 is the number itself.
The graph of the logarithm base 2 crosses the x-axis at x = 1 and passes through the points (2, 1), (4, 2), and (8, 3), depicting, e.g., log 2 (8) = 3 and 2 3 = 8. The graph gets arbitrarily close to the y-axis, but does not meet it. Addition, multiplication, and exponentiation are three of the most fundamental arithmetic operations.
The roots of the quadratic function y = 1 / 2 x 2 − 3x + 5 / 2 are the places where the graph intersects the x-axis, the values x = 1 and x = 5. They can be found via the quadratic formula. In elementary algebra, the quadratic formula is a closed-form expression describing the solutions of a quadratic equation.
Then f : X → Y has a closed graph (and a sequentially closed graph) in X × Y = ℝ 2 but it is not continuous (since it has a discontinuity at x = 0). [4] Let X denote the real numbers ℝ with the usual Euclidean topology, let Y denote ℝ with the discrete topology, and let Id : X → Y be the identity map (i.e. Id(x) := x for every x ∈ X).