Search results
Results from the WOW.Com Content Network
The influx of Ca 2+ ions causes the secretion of insulin stored in vesicles through the cell membrane. The process of insulin secretion is an example of a trigger mechanism in a signal transduction pathway because insulin is secreted after glucose enters the beta cell and that triggers several other processes in a chain reaction.
Insulin (/ ˈ ɪ n. sj ʊ. l ɪ n /, [5] [6] from Latin insula, 'island') is a peptide hormone produced by beta cells of the pancreatic islets encoded in humans by the insulin (INS) gene. It is the main anabolic hormone of the body. [ 7 ]
Glucokinase in beta cells serves as a glucose sensor, amplifying insulin secretion as blood glucose rises. In the pancreatic beta-cell, glucokinase is a key regulator enzyme. Glucokinase is very important in the regulation of insulin secretion and has been known as the pancreatic beta-cell sensor.
Muscle cells also take glucose up through insulin-sensitive GLUT4 glucose channels, and convert it into muscle glycogen. [41] A fall in blood glucose, causes insulin secretion to be stopped, and glucagon to be secreted from the alpha cells into the blood. This inhibits the uptake of glucose from the blood by the liver, fats cells, and muscle.
If the blood glucose level falls to dangerously low levels (as during very heavy exercise or lack of food for extended periods), the alpha cells of the pancreas release glucagon, a peptide hormone which travels through the blood to the liver, where it binds to glucagon receptors on the surface of liver cells and stimulates them to break down glycogen stored inside the cells into glucose (this ...
The Randle cycle, also known as the glucose fatty-acid cycle, is a metabolic process involving the cross inhibition of glucose and fatty acids for substrates. [1] It is theorized to play a role in explaining type 2 diabetes and insulin resistance. [2] [3] It was named for Philip Randle, who described it in 1963. [4]
If you've been having trouble with any of the connections or words in Saturday's puzzle, you're not alone and these hints should definitely help you out. Plus, I'll reveal the answers further down
The insulin receptor (IR) is a transmembrane receptor that is activated by insulin, IGF-I, IGF-II and belongs to the large class of receptor tyrosine kinase. [5] Metabolically, the insulin receptor plays a key role in the regulation of glucose homeostasis; a functional process that under degenerate conditions may result in a range of clinical manifestations including diabetes and cancer.