Search results
Results from the WOW.Com Content Network
Chemical accuracy is the accuracy required to make realistic chemical predictions and is generally considered to be 1 kcal/mol or 4 kJ/mol. To reach that accuracy in an economic way, it is necessary to use a series of post-Hartree–Fock methods and combine the results. These methods are called quantum chemistry composite methods. [56]
G4 is a compound method in spirit of the other Gaussian theories and attempts to take the accuracy achieved with G3X one small step further. This involves the introduction of an extrapolation scheme for obtaining basis set limit Hartree-Fock energies, the use of geometries and thermochemical corrections calculated at B3LYP/6-31G(2df,p) level, a ...
Example Is the bonding situation in disilyne Si 2 H 2 the same as in acetylene (C 2 H 2)? A series of ab initio studies of Si 2 H 2 is an example of how ab initio computational chemistry can predict new structures that are subsequently confirmed by experiment. They go back over 20 years, and most of the main conclusions were reached by 1995.
The precise and transparent substructural specification that SMARTS allows has been exploited in a number of applications. Substructural filters defined in SMARTS have been used [ 7 ] to identify undesirable compounds when performing strategic pooling of compounds for high-throughput screening.
In analytical chemistry, a standard solution (titrant or titrator) is a solution containing an accurately known concentration.Standard solutions are generally prepared by dissolving a solute of known mass into a solvent to a precise volume, or by diluting a solution of known concentration with more solvent. [1]
Analytical chemistry has been important since the early days of chemistry, providing methods for determining which elements and chemicals are present in the object in question. During this period, significant contributions to analytical chemistry included the development of systematic elemental analysis by Justus von Liebig and systematized ...
The qualitative and quantitative data generated from the laboratory can then be used for decision making. In the chemical sense, quantitative analysis refers to the measurement of the amount or concentration of an element or chemical compound in a matrix that differs from the element or compound. [3]
Gravimetric analysis describes a set of methods used in analytical chemistry for the quantitative determination of an analyte (the ion being analyzed) based on its mass. The principle of this type of analysis is that once an ion's mass has been determined as a unique compound, that known measurement can then be used to determine the same analyte's mass in a mixture, as long as the relative ...