Search results
Results from the WOW.Com Content Network
Atomic mass (m a or m) is the mass of a single atom. ... For example, every atom of oxygen-16 is expected to have exactly the same atomic mass (relative isotopic mass ...
The mass number should also not be confused with the standard atomic weight (also called atomic weight) of an element, which is the ratio of the average atomic mass of the different isotopes of that element (weighted by abundance) to the atomic mass constant. [9] The atomic weight is a mass ratio, while the mass number is a counted number (and ...
Since protons and neutrons have approximately the same mass (and the mass of the electrons is negligible for many purposes) and the mass defect of the nucleon binding is always small compared to the nucleon mass, the atomic mass of any atom, when expressed in daltons (making a quantity called the "relative isotopic mass"), is within 1% of the ...
Hydrogen-1 (the lightest isotope of hydrogen which is also the nuclide with the lowest mass) has an atomic weight of 1.007825 Da. [66] The value of this number is called the atomic mass. A given atom has an atomic mass approximately equal (within 1%) to its mass number times the atomic mass unit (for example the mass of a nitrogen-14 is roughly ...
Matter should not be confused with mass, as the two are not the same in modern physics. [9] Matter is a general term describing any 'physical substance'. By contrast, mass is not a substance but rather an extensive property of matter and other substances or systems; various types of mass are defined within physics – including but not limited ...
The atomic mass, on the other hand, is measured using the atomic mass unit based on the mass of the carbon-12 atom. It is denoted with symbols "u" (for unified atomic mass unit) or "Da" (for dalton). The atomic masses of naturally occurring isotopes of an element determine the standard atomic weight of the element.
The mass of an atomic nucleus is less than the total mass of the protons and neutrons that make it up. [15] This mass decrease is also equivalent to the energy required to break up the nucleus into individual protons and neutrons. This effect can be understood by looking at the potential energy of the individual components.
In physics, mass is not the same as weight, even though mass is often determined by measuring the object's weight using a spring scale, rather than balance scale comparing it directly with known masses. An object on the Moon would weigh less than it does on Earth because of the lower gravity, but it would still have the same mass.