Search results
Results from the WOW.Com Content Network
A variant of Gaussian elimination called Gauss–Jordan elimination can be used for finding the inverse of a matrix, if it exists. If A is an n × n square matrix, then one can use row reduction to compute its inverse matrix, if it exists. First, the n × n identity matrix is augmented to the right of A, forming an n × 2n block matrix [A | I].
Simplified forms of Gaussian elimination have been developed for these situations. [ 6 ] The textbook Numerical Mathematics by Alfio Quarteroni , Sacco and Saleri, lists a modified version of the algorithm which avoids some of the divisions (using instead multiplications), which is beneficial on some computer architectures.
The reduced row echelon form of a matrix is unique and does not depend on the sequence of elementary row operations used to obtain it. The variant of Gaussian elimination that transforms a matrix to reduced row echelon form is sometimes called Gauss–Jordan elimination. A matrix is in column echelon form if its transpose is in row echelon form.
In this case it is faster (and more convenient) to do an LU decomposition of the matrix A once and then solve the triangular matrices for the different b, rather than using Gaussian elimination each time. The matrices L and U could be thought to have "encoded" the Gaussian elimination process.
No (partial) pivoting is necessary for a strictly column diagonally dominant matrix when performing Gaussian elimination (LU factorization). The Jacobi and Gauss–Seidel methods for solving a linear system converge if the matrix is strictly (or irreducibly) diagonally dominant. Many matrices that arise in finite element methods are diagonally ...
The pivot or pivot element is the element of a matrix, or an array, which is selected first by an algorithm (e.g. Gaussian elimination, simplex algorithm, etc.), to do certain calculations. In the case of matrix algorithms, a pivot entry is usually required to be at least distinct from zero, and often distant from it; in this case finding this ...
Otherwise, the Bareiss algorithm may be viewed as a variant of Gaussian elimination and needs roughly the same number of arithmetic operations. It follows that, for an n × n matrix of maximum (absolute) value 2 L for each entry, the Bareiss algorithm runs in O( n 3 ) elementary operations with an O( n n /2 2 nL ) bound on the absolute value of ...
In linear algebra and statistics, the partial inverse of a matrix is an operation related to Gaussian elimination which has applications in numerical analysis and statistics. It is also known by various authors as the principal pivot transform, or as the sweep, gyration, or exchange operator.