Search results
Results from the WOW.Com Content Network
The infimum is, in a precise sense, dual to the concept of a supremum. Infima and suprema of real numbers are common special cases that are important in analysis, and especially in Lebesgue integration. However, the general definitions remain valid in the more abstract setting of order theory where arbitrary partially ordered sets are considered.
Musical symbols are marks and symbols in musical notation that indicate various aspects of how a piece of music is to be performed. There are symbols to communicate information about many musical elements, including pitch, duration, dynamics, or articulation of musical notes; tempo, metre, form (e.g., whether sections are repeated), and details about specific playing techniques (e.g., which ...
Then f preserves the supremum of S if the set f(S) = {f(x) | x in S} has a least upper bound in Q which is equal to f(s), i.e. f(sup S) = sup f(S) This definition consists of two requirements: the supremum of the set f(S) exists and it is equal to f(s). This corresponds to the abovementioned parallel to category theory, but is not always ...
In instrumental music, a style of playing that imitates the way the human voice might express the music, with a measured tempo and flexible legato. cantilena a vocal melody or instrumental passage in a smooth, lyrical style canto Chorus; choral; chant cantus mensuratus or cantus figuratus (Lat.) Meaning respectively "measured song" or "figured ...
The best-known example is the existence of all suprema, which is in fact equivalent to the existence of all infima. Indeed, for any subset X of a poset, one can consider its set of lower bounds B . The supremum of B is then equal to the infimum of X : since each element of X is an upper bound of B , sup B is smaller than all elements of X , i.e ...
The supremum/superior/outer limit is a set that joins these accumulation sets together. That is, it is the union of all of the accumulation sets. When ordering by set inclusion, the supremum limit is the least upper bound on the set of accumulation points because it contains each of them. Hence, it is the supremum of the limit points.
In mathematics, the least-upper-bound property (sometimes called completeness, supremum property or l.u.b. property) [1] is a fundamental property of the real numbers. More generally, a partially ordered set X has the least-upper-bound property if every non-empty subset of X with an upper bound has a least upper bound (supremum) in X .
In music theory, limits or harmonic limits are a way of characterizing the harmony found in a piece or genre of music, or the harmonies that can be made using a particular scale. The term limit was introduced by Harry Partch, [1] who used it to give an upper bound on the complexity of harmony; hence the name.