Search results
Results from the WOW.Com Content Network
In geometry, calculating the area of a triangle is an elementary problem encountered often in many different situations. The best known and simplest formula is T = b h / 2 , {\displaystyle T=bh/2,} where b is the length of the base of the triangle, and h is the height or altitude of the triangle.
In this example, the triangle's side lengths and area are integers, making it a Heronian triangle. However, Heron's formula works equally well when the side lengths are real numbers. As long as they obey the strict triangle inequality, they define a triangle in the Euclidean plane whose area is a positive real number.
In geometry, Fagnano's problem is an optimization problem that was first stated by Giovanni Fagnano in 1775: For a given acute triangle determine the inscribed triangle of minimal perimeter . The solution is the orthic triangle , with vertices at the base points of the altitudes of the given triangle.
The solution to the quadrilateral isoperimetric problem is the square, and the solution to the triangle problem is the equilateral triangle. In general, the polygon with n sides having the largest area and a given perimeter is the regular polygon, which is closer to being a circle than is any irregular polygon with the same number of sides.
The parameters most commonly appearing in triangle inequalities are: the side lengths a, b, and c;; the semiperimeter s = (a + b + c) / 2 (half the perimeter p);; the angle measures A, B, and C of the angles of the vertices opposite the respective sides a, b, and c (with the vertices denoted with the same symbols as their angle measures);
In geometry, a Heronian triangle (or Heron triangle) is a triangle whose side lengths a, b, and c and area A are all positive integers. [ 1 ] [ 2 ] Heronian triangles are named after Heron of Alexandria , based on their relation to Heron's formula which Heron demonstrated with the example triangle of sides 13, 14, 15 and area 84 .
A magic triangle or perimeter magic triangle [1] is an arrangement of the integers from 1 to n on the sides of a triangle with the same number of integers on each side, called the order of the triangle, so that the sum of integers on each side is a constant, the magic sum of the triangle.
The only primitive Pythagorean triangles for which the square of the perimeter equals an integer multiple of the area are (3, 4, 5) with perimeter 12 and area 6 and with the ratio of perimeter squared to area being 24; (5, 12, 13) with perimeter 30 and area 30 and with the ratio of perimeter squared to area being 30; and (9, 40, 41) with ...