Search results
Results from the WOW.Com Content Network
In mathematics, a product is the result of multiplication, or an expression that identifies objects (numbers or variables) to be multiplied, called factors.For example, 21 is the product of 3 and 7 (the result of multiplication), and (+) is the product of and (+) (indicating that the two factors should be multiplied together).
The natural numbers 0 and 1 are trivial sum-product numbers for all , and all other sum-product numbers are nontrivial sum-product numbers. For example, the number 144 in base 10 is a sum-product number, because 1 + 4 + 4 = 9 {\displaystyle 1+4+4=9} , 1 × 4 × 4 = 16 {\displaystyle 1\times 4\times 4=16} , and 9 × 16 = 144 {\displaystyle 9 ...
By using the product rule, one gets the derivative ′ = + (since the derivative of is , and the derivative of the sine function is the cosine function). One special case of the product rule is the constant multiple rule, which states: if c is a number, and () is a differentiable function, then () is also differentiable, and its derivative is
The graph of the square function y = x 2 is a parabola. The squaring operation defines a real function called the square function or the squaring function. Its domain is the whole real line, and its image is the set of nonnegative real numbers. The square function preserves the order of positive numbers: larger numbers have larger squares.
The convolution defines a product on the linear space of integrable functions. This product satisfies the following algebraic properties, which formally mean that the space of integrable functions with the product given by convolution is a commutative associative algebra without identity (Strichartz 1994, §3.3).
The product of two measurements (or physical quantities) is a new type of measurement, usually with a derived unit. For example, multiplying the lengths (in meters or feet) of the two sides of a rectangle gives its area (in square meters or square feet). Such a product is the subject of dimensional analysis.
In fact, if we consider these as formal generating functions, the existence of such a formal Euler product expansion is a necessary and sufficient condition that a(n) be multiplicative: this says exactly that a(n) is the product of the a(p k) whenever n factors as the product of the powers p k of distinct primes p.
A function with domain X and codomain Y is a binary relation R between X and Y ... their sum, difference and product are functions defined by (+) ... [24] In computer ...