enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Makridakis Competitions - Wikipedia

    en.wikipedia.org/wiki/Makridakis_Competitions

    The time series included yearly, quarterly, monthly, daily, and other time series. In order to ensure that enough data was available to develop an accurate forecasting model, minimum thresholds were set for the number of observations: 14 for yearly series, 16 for quarterly series, 48 for monthly series, and 60 for other series.

  3. Long short-term memory - Wikipedia

    en.wikipedia.org/wiki/Long_short-term_memory

    Selectively outputting relevant information from the current state allows the LSTM network to maintain useful, long-term dependencies to make predictions, both in current and future time-steps. LSTM has wide applications in classification, [5] [6] data processing, time series analysis tasks, [7] speech recognition, [8] [9] machine translation ...

  4. Recurrent neural network - Wikipedia

    en.wikipedia.org/wiki/Recurrent_neural_network

    Unlike feedforward neural networks, which process data in a single pass, RNNs process data across multiple time steps, making them well-adapted for modelling and processing text, speech, and time series. [1] The building block of RNNs is the recurrent unit. This unit maintains a hidden state, essentially a form of memory, which is updated at ...

  5. Time series - Wikipedia

    en.wikipedia.org/wiki/Time_series

    Other applications are in data mining, pattern recognition and machine learning, where time series analysis can be used for clustering, [2] [3] [4] classification, [5] query by content, [6] anomaly detection as well as forecasting.

  6. Predictive analytics - Wikipedia

    en.wikipedia.org/wiki/Predictive_analytics

    Time series models are a subset of machine learning that utilize time series in order to understand and forecast data using past values. A time series is the sequence of a variable's value over equally spaced periods, such as years or quarters in business applications. [11]

  7. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  8. List of datasets for machine-learning research - Wikipedia

    en.wikipedia.org/wiki/List_of_datasets_for...

    OpenML: [493] Web platform with Python, R, Java, and other APIs for downloading hundreds of machine learning datasets, evaluating algorithms on datasets, and benchmarking algorithm performance against dozens of other algorithms. PMLB: [494] A large, curated repository of benchmark datasets for evaluating supervised machine learning algorithms ...

  9. Mamba (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Mamba_(deep_learning...

    Mamba [a] is a deep learning architecture focused on sequence modeling. It was developed by researchers from Carnegie Mellon University and Princeton University to address some limitations of transformer models , especially in processing long sequences.