Search results
Results from the WOW.Com Content Network
Phenylboronic acid or benzeneboronic acid, abbreviated as PhB(OH) 2 where Ph is the phenyl group C 6 H 5 - and B(OH) 2 is a boronic acid containing a phenyl substituent and two hydroxyl groups attached to boron. Phenylboronic acid is a white powder and is commonly used in organic synthesis.
[2] [3] Boronic acids, and boronic esters are common boryl groups incorporated into organic molecules through borylation reactions. [4] Boronic acids are trivalent boron-containing organic compounds that possess one alkyl substituent and two hydroxyl groups. Similarly, boronic esters possess one alkyl substituent and two ester groups.
Protodeboronation is a well-known undesired side reaction, and frequently associated with metal-catalysed coupling reactions that utilise boronic acids (see Suzuki reaction). [1] For a given boronic acid, the propensity to undergo protodeboronation is highly variable and dependent on various factors, such as the reaction conditions employed and ...
Boronic acids are known to bind to active site serines and are part of inhibitors for porcine pancreatic lipase, [2] subtilisin [3] and the protease Kex2. [4] Furthermore, boronic acid derivatives constitute a class of inhibitors for human acyl-protein thioesterase 1 and 2, which are cancer drug targets within the Ras cycle. [5]
Removal of the BOC group in amino acids can be accomplished with strong acids such as trifluoroacetic acid in dichloromethane, or with HCl in methanol. [2] [3] [4] A complication may be the tendency of the t-butyl cation intermediate to alkylate other nucleophiles; scavengers such as anisole or thioanisole may be used.
n-Butyl glycidyl ether is metabolized renally to butoxyacetic acid, 3-butoxy-2-hydroxypropionic acid and 3-butoxy-2-acetylaminopropionic acid. [5] [6] Safety
The mechanism of organotrifluoroborate-based Suzuki-Miyaura coupling reactions has recently been investigated in detail. The organotrifluoroborate hydrolyses to the corresponding boronic acid in situ, so a boronic acid can be used in place of an organotrifluoroborate, as long as it is added slowly and carefully. [7] [8]
The decomposition reaction proceeds via the generation of methyl radicals. (CH 3) 3 COOC(CH 3) 3 → 2 (CH 3) 3 CO • (CH 3) 3 CO • → (CH 3) 2 CO + CH • 3 2 CH • 3 → C 2 H 6. DTBP can in principle be used in engines where oxygen is limited, since the molecule supplies both the oxidizer and the fuel. [2]