Search results
Results from the WOW.Com Content Network
Lines perpendicular to line l are modeled by chords whose extension passes through the pole of l. Hence we draw the unique line between the poles of the two given lines, and intersect it with the boundary circle; the chord of intersection will be the desired common perpendicular of the ultraparallel lines.
Bisect one of the angles made by these two lines and name the angle bisector b. Using a hyperbolic ruler, construct a line c such that c is perpendicular to b and parallel to a. As a result, c is also parallel to a', making c the common parallel to lines a and a'. [3] Case 2: a and a' are parallel to each other
Because parallel lines in a Euclidean plane are equidistant there is a unique distance between the two parallel lines. Given the equations of two non-vertical, non-horizontal parallel lines, = + = +, the distance between the two lines can be found by locating two points (one on each line) that lie on a common perpendicular to the parallel lines ...
If two lines (a and b) are both perpendicular to a third line (c), all of the angles formed along the third line are right angles. Therefore, in Euclidean geometry, any two lines that are both perpendicular to a third line are parallel to each other, because of the parallel postulate. Conversely, if one line is perpendicular to a second line ...
The common perpendicular of two lines is the chord that when extended goes through both poles of the chords. When one of the chords is a diameter of the boundary circle then the common perpendicular is the chord that is perpendicular to the diameter and that when lengthened goes through the pole of the other chord.
The line with equation ax + by + c = 0 has slope -a/b, so any line perpendicular to it will have slope b/a (the negative reciprocal). Let (m, n) be the point of intersection of the line ax + by + c = 0 and the line perpendicular to it which passes through the point (x 0, y 0). The line through these two points is perpendicular to the original ...
Also, two ultraparallel lines have minimum distance at the common perpendicular and monotonically increasing distances as we go away from the perpendicular. This means that the points of K inside AB will have distance from L smaller than the common distance of A and B from L , while the points of K outside AB will have greater distance.
For example, two distinct lines can intersect in no more than one point, intersecting lines form equal opposite angles, and adjacent angles of intersecting lines are supplementary. When a third line is introduced, then there can be properties of intersecting lines that differ from intersecting lines in Euclidean geometry.