Search results
Results from the WOW.Com Content Network
A transcription bubble is a molecular structure formed during DNA transcription when a limited portion of the DNA double helix is unwound. The size of a transcription bubble ranges from 12 to 14 base pairs. A transcription bubble is formed when the RNA polymerase enzyme binds to a promoter and causes two DNA strands to detach. [1]
RNA polymerase, assisted by one or more general transcription factors, then unwinds approximately 14 base pairs of DNA to form an RNA polymerase-promoter open complex. In the open complex, the promoter DNA is partly unwound and single-stranded. The exposed, single-stranded DNA is referred to as the "transcription bubble". [6]
The DNA double helix is rewound by RNA polymerase at the rear of the transcription bubble. [3] Like how two adjacent zippers work, when pulled together, they unzip and rezip as they proceed in a particular direction. Various factors can cause double-stranded DNA to break; thus, reorder genes or cause cell death. [4]
Bacterial transcription is the process in which a segment of bacterial DNA is copied into a newly synthesized strand of messenger RNA (mRNA) with use of the enzyme RNA polymerase. The process occurs in three main steps: initiation, elongation, and termination; and the result is a strand of mRNA that is complementary to a single strand of DNA.
The Pribnow box has a function similar to the TATA box that occurs in promoters in eukaryotes and archaea: it is recognized and bound by a subunit of RNA polymerase during initiation of transcription. [3] This region of the DNA is also the first place where base pairs separate during prokaryotic transcription to allow access to the template strand.
As DNA synthesis continues, the original DNA strands continue to unwind on each side of the bubble, forming a replication fork with two prongs. In bacteria, which have a single origin of replication on their circular chromosome, this process creates a "theta structure" (resembling the Greek letter theta: θ). In contrast, eukaryotes have longer ...
[2] [3] The mRNA sequence is determined by the sequence of genomic DNA. [4] In this context, the standard genetic code is referred to as translation table 1. [3] It can also be represented in a DNA codon table. The DNA codons in such tables occur on the sense DNA strand and are arranged in a 5 ′-to-3 ′ direction.
In molecular biology and genetics, DNA annotation or genome annotation is the process of describing the structure and function of the components of a genome, [2] by analyzing and interpreting them in order to extract their biological significance and understand the biological processes in which they participate. [3]