Search results
Results from the WOW.Com Content Network
In mathematics, the dot product or scalar product [note 1] is an algebraic operation that takes two equal-length sequences of numbers (usually coordinate vectors), and returns a single number. In Euclidean geometry, the dot product of the Cartesian coordinates of two vectors is widely used.
Vector algebra relations — regarding operations on individual vectors such as dot product, cross product, etc. Vector calculus identities — regarding operations on vector fields such as divergence, gradient, curl, etc.
In Cartesian coordinates, the divergence of a continuously differentiable vector field = + + is the scalar-valued function: = = (, , ) (, , ) = + +.. As the name implies, the divergence is a (local) measure of the degree to which vectors in the field diverge.
The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.
The scalar triple product (also called the mixed product, box product, or triple scalar product) is defined as the dot product of one of the vectors with the cross product of the other two. Geometric interpretation
Founded upon the lectures of J. Willard Gibbs, Ph.D., LL.D." The first chapter covers vectors in three spatial dimensions, the concept of a (real) scalar, and the product of a scalar with a vector. The second chapter introduces the dot and cross products for pairs of vectors. These are extended to a scalar triple product and a
Cross product – also known as the "vector product", a binary operation on two vectors that results in another vector. The cross product of two vectors in 3-space is defined as the vector perpendicular to the plane determined by the two vectors whose magnitude is the product of the magnitudes of the two vectors and the sine of the angle ...
Also, the dot, cross, and dyadic products can all be expressed in matrix form. Dyadic expressions may closely resemble the matrix equivalents. The dot product of a dyadic with a vector gives another vector, and taking the dot product of this result gives a scalar derived from the dyadic.