enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. MTD(f) - Wikipedia

    en.wikipedia.org/wiki/MTD(f)

    MTD(f) is a shortened form of MTD(n,f) which stands for Memory-enhanced Test Driver with node ‘n’ and value ‘f’. [1] The efficacy of this paradigm depends on a good initial guess, and the supposition that the final minimax value lies in a narrow window around the guess (which becomes an upper/lower bound for the search from root).

  3. Iterative deepening depth-first search - Wikipedia

    en.wikipedia.org/wiki/Iterative_deepening_depth...

    Iterative deepening prevents this loop and will reach the following nodes on the following depths, assuming it proceeds left-to-right as above: 0: A; 1: A, B, C, E (Iterative deepening has now seen C, when a conventional depth-first search did not.) 2: A, B, D, F, C, G, E, F (It still sees C, but that it came later.

  4. Iterative deepening A* - Wikipedia

    en.wikipedia.org/wiki/Iterative_deepening_A*

    Iterative deepening A* (IDA*) is a graph traversal and path search algorithm that can find the shortest path between a designated start node and any member of a set of goal nodes in a weighted graph. It is a variant of iterative deepening depth-first search that borrows the idea to use a heuristic function to conservatively estimate the ...

  5. Fringe search - Wikipedia

    en.wikipedia.org/wiki/Fringe_search

    In essence, fringe search is a middle ground between A* and the iterative deepening A* variant (IDA*). If g(x) is the cost of the search path from the first node to the current, and h(x) is the heuristic estimate of the cost from the current node to the goal, then ƒ(x) = g(x) + h(x), and h* is the actual path cost to the goal.

  6. A* search algorithm - Wikipedia

    en.wikipedia.org/wiki/A*_search_algorithm

    At each step of the algorithm, the node with the lowest f(x) value is removed from the queue, the f and g values of its neighbors are updated accordingly, and these neighbors are added to the queue. The algorithm continues until a removed node (thus the node with the lowest f value out of all fringe nodes) is a goal node.

  7. Principal variation search - Wikipedia

    en.wikipedia.org/wiki/Principal_variation_search

    In iterative deepening search, the previous iteration has already established a candidate for such a sequence, which is also commonly called the principal variation. For any non-leaf in this principal variation, its children are reordered such that the next node from this principal variation is the first child.

  8. Depth-first search - Wikipedia

    en.wikipedia.org/wiki/Depth-first_search

    Animated example of a depth-first search For the following graph: a depth-first search starting at the node A, assuming that the left edges in the shown graph are chosen before right edges, and assuming the search remembers previously visited nodes and will not repeat them (since this is a small graph), will visit the nodes in the following ...

  9. Bidirectional search - Wikipedia

    en.wikipedia.org/wiki/Bidirectional_search

    Front-to-Front algorithms calculate the h value of a node n by using the heuristic estimate between n and some subset of ′. The canonical example is that of the BHFFA (bidirectional heuristic front-to-front algorithm), [ 3 ] [ 4 ] where the h function is defined as the minimum of all heuristic estimates between the current node and the nodes ...