Search results
Results from the WOW.Com Content Network
Matrix chain multiplication (or the matrix chain ordering problem [1]) is an optimization problem concerning the most efficient way to multiply a given sequence of matrices. The problem is not actually to perform the multiplications, but merely to decide the sequence of the matrix multiplications involved.
For example, in the expression 3(x+y) the parentheses are symbols of grouping, but in the expression (3, 5) the parentheses may indicate an open interval. The most common symbols of grouping are the parentheses and the square brackets, and the latter are usually used to avoid too many repeated parentheses.
For example, (2 + 3) × 4 = 20 forces addition to precede multiplication, while (3 + 5) 2 = 64 forces addition to precede exponentiation. If multiple pairs of parentheses are required in a mathematical expression (such as in the case of nested parentheses), the parentheses may be replaced by other types of brackets to avoid confusion, as in [2 ...
In elementary algebra, parentheses ( ) are used to specify the order of operations. [1] Terms inside the bracket are evaluated first; hence 2×(3 + 4) is 14, 20 ÷ (5(1 + 1)) is 2 and (2×3) + 4 is 10. This notation is extended to cover more general algebra involving variables: for example (x + y) × (x − y). Square brackets are also often ...
In linear algebra, the Strassen algorithm, named after Volker Strassen, is an algorithm for matrix multiplication.It is faster than the standard matrix multiplication algorithm for large matrices, with a better asymptotic complexity, although the naive algorithm is often better for smaller matrices.
Matrix multiplication shares some properties with usual multiplication. However, matrix multiplication is not defined if the number of columns of the first factor differs from the number of rows of the second factor, and it is non-commutative, [10] even when the product remains defined after changing the order of the factors. [11] [12]
Even though the parentheses were rearranged on each line, the values of the expressions were not altered. Since this holds true when performing addition and multiplication on any real numbers, it can be said that "addition and multiplication of real numbers are associative operations".
Karatsuba multiplication of az+b and cz+d (boxed), and 1234 and 567 with z=100. Magenta arrows denote multiplication, amber denotes addition, silver denotes subtraction and cyan denotes left shift. (A), (B) and (C) show recursion with z=10 to obtain intermediate values. The Karatsuba algorithm is a fast multiplication algorithm.