Search results
Results from the WOW.Com Content Network
[Functions that consume structured data] typically decompose their arguments into their immediate structural components and then process those components. If one of the immediate components belongs to the same class of data as the input, the function is recursive. For that reason, we refer to these functions as (STRUCTURALLY) RECURSIVE FUNCTIONS.
A classic example of recursion is the definition of the factorial function, given here in Python code: def factorial ( n ): if n > 0 : return n * factorial ( n - 1 ) else : return 1 The function calls itself recursively on a smaller version of the input (n - 1) and multiplies the result of the recursive call by n , until reaching the base case ...
In computer science, corecursion is a type of operation that is dual to recursion.Whereas recursion works analytically, starting on data further from a base case and breaking it down into smaller data and repeating until one reaches a base case, corecursion works synthetically, starting from a base case and building it up, iteratively producing data further removed from a base case.
But if this equals some primitive recursive function, there is an m such that h(n) = f(m,n) for all n, and then h(m) = f(m,m), leading to contradiction. However, the set of primitive recursive functions is not the largest recursively enumerable subset of the set of all total recursive functions. For example, the set of provably total functions ...
This particular use of the CRTP has been called "simulated dynamic binding" by some. [10] This pattern is used extensively in the Windows ATL and WTL libraries. To elaborate on the above example, consider a base class with no virtual functions. Whenever the base class calls another member function, it will always call its own base class functions.
These examples reduce easily to a single recursive function by inlining the forest function in the tree function, which is commonly done in practice: directly recursive functions that operate on trees sequentially process the value of the node and recurse on the children within one function, rather than dividing these into two separate functions.
As one of the examples used to demonstrate such reasoning, Manna's book includes a tail-recursive algorithm equivalent to the nested-recursive 91 function. Many of the papers that report an "automated verification" (or termination proof ) of the 91 function only handle the tail-recursive version.
Equivalent definitions can be given using μ-recursive functions, Turing machines, or λ-calculus as the formal representation of algorithms. The computable numbers form a real closed field and can be used in the place of real numbers for many, but not all, mathematical purposes. [citation needed]