enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Optical path length - Wikipedia

    en.wikipedia.org/wiki/Optical_path_length

    The OPD can be calculated from the following equation: = where d 1 and d 2 are the distances of the ray passing through medium 1 or 2, n 1 is the greater refractive index (e.g., glass) and n 2 is the smaller refractive index (e.g., air).

  3. Wavelength - Wikipedia

    en.wikipedia.org/wiki/Wavelength

    The wavelength of a sine wave, λ, can be measured between any two points with the same phase, such as between crests (on top), or troughs (on bottom), or corresponding zero crossings as shown. In physics and mathematics, wavelength or spatial period of a wave or periodic function is the distance over which the wave's shape repeats.

  4. Photon energy - Wikipedia

    en.wikipedia.org/wiki/Photon_energy

    This equation is known as the Planck relation. Additionally, using equation f = c/λ, = where E is the photon's energy; λ is the photon's wavelength; c is the speed of light in vacuum; h is the Planck constant; The photon energy at 1 Hz is equal to 6.626 070 15 × 10 −34 J, which is equal to 4.135 667 697 × 10 −15 eV.

  5. Cauchy's equation - Wikipedia

    en.wikipedia.org/wiki/Cauchy's_equation

    where n is the refractive index, λ is the wavelength, A, B, C, etc., are coefficients that can be determined for a material by fitting the equation to measured refractive indices at known wavelengths. The coefficients are usually quoted for λ as the vacuum wavelength in micrometres. Usually, it is sufficient to use a two-term form of the ...

  6. Rydberg formula - Wikipedia

    en.wikipedia.org/wiki/Rydberg_formula

    In 1890, Rydberg proposed on a formula describing the relation between the wavelengths in spectral lines of alkali metals. [2]: v1:376 He noticed that lines came in series and he found that he could simplify his calculations using the wavenumber (the number of waves occupying the unit length, equal to 1/λ, the inverse of the wavelength) as his unit of measurement.

  7. Electromagnetic wave equation - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_wave_equation

    The electromagnetic wave equation is a second-order partial differential equation that describes the propagation of electromagnetic waves through a medium or in a vacuum. It is a three-dimensional form of the wave equation. The homogeneous form of the equation, written in terms of either the electric field E or the magnetic field B, takes the form:

  8. Abbe number - Wikipedia

    en.wikipedia.org/wiki/Abbe_number

    The shortest wavelength's index is , and the longest's is . Abbe numbers are used to classify glass and other optical materials in terms of their chromaticity . For example, the higher dispersion flint glasses have relatively small Abbe numbers V < 55 {\displaystyle V<55} whereas the lower dispersion crown glasses have larger Abbe numbers.

  9. Wien's displacement law - Wikipedia

    en.wikipedia.org/wiki/Wien's_displacement_law

    Formally, the wavelength version of Wien's displacement law states that the spectral radiance of black-body radiation per unit wavelength, peaks at the wavelength given by: = where T is the absolute temperature and b is a constant of proportionality called Wien's displacement constant, equal to 2.897 771 955... × 10 −3 m⋅K, [1] [2] or b ...