enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fraction - Wikipedia

    en.wikipedia.org/wiki/Fraction

    To change ⁠ 1 / 3 ⁠ to a decimal, divide 1.000... by 3 (" 3 into 1.000... "), and stop when the desired accuracy is obtained, e.g., at 4 decimals with 0.3333. The fraction ⁠ 1 / 4 ⁠ can be written exactly with two decimal digits, while the fraction ⁠ 1 / 3 ⁠ cannot be written exactly as a decimal with a finite number of digits.

  3. Quinary - Wikipedia

    en.wikipedia.org/wiki/Quinary

    Quinary (base 5 or pental [1] [2] [3]) is a numeral system with five as the base. A possible origination of a quinary system is that there are five digits on either hand . In the quinary place system, five numerals, from 0 to 4 , are used to represent any real number .

  4. List of numeral systems - Wikipedia

    en.wikipedia.org/wiki/List_of_numeral_systems

    Using all numbers and all letters except I and O; the smallest base where ⁠ 1 / 2 ⁠ terminates and all of ⁠ 1 / 2 ⁠ to ⁠ 1 / 18 ⁠ have periods of 4 or shorter. 35: Covers the ten decimal digits and all letters of the English alphabet, apart from not distinguishing 0 from O. 36: Hexatrigesimal [57] [58]

  5. Octal - Wikipedia

    en.wikipedia.org/wiki/Octal

    0.5 × 8 = 4.0 = 4 + 0 Therefore, 0.1640625 10 = 0.124 8 . These two methods can be combined to handle decimal numbers with both integer and fractional parts, using the first on the integer part and the second on the fractional part.

  6. Fixed-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_arithmetic

    A fixed-point representation of a fractional number is essentially an integer that is to be implicitly multiplied by a fixed scaling factor. For example, the value 1.23 can be stored in a variable as the integer value 1230 with implicit scaling factor of 1/1000 (meaning that the last 3 decimal digits are implicitly assumed to be a decimal fraction), and the value 1 230 000 can be represented ...

  7. Decimal representation - Wikipedia

    en.wikipedia.org/wiki/Decimal_representation

    Also the converse is true: The decimal expansion of a rational number is either finite, or endlessly repeating. Finite decimal representations can also be seen as a special case of infinite repeating decimal representations. For example, 36 ⁄ 25 = 1.44 = 1.4400000...; the endlessly repeated sequence is the one-digit sequence "0".

  8. Decimal - Wikipedia

    en.wikipedia.org/wiki/Decimal

    A repeating decimal is an infinite decimal that, after some place, repeats indefinitely the same sequence of digits (e.g., 5.123144144144144... = 5.123 144). [4] An infinite decimal represents a rational number, the quotient of two integers, if and only if it is a repeating decimal or has a finite number of non-zero digits.

  9. Repeating decimal - Wikipedia

    en.wikipedia.org/wiki/Repeating_decimal

    For example, in duodecimal, ⁠ 1 / 2 ⁠ = 0.6, ⁠ 1 / 3 ⁠ = 0.4, ⁠ 1 / 4 ⁠ = 0.3 and ⁠ 1 / 6 ⁠ = 0.2 all terminate; ⁠ 1 / 5 ⁠ = 0. 2497 repeats with period length 4, in contrast with the equivalent decimal expansion of 0.2; ⁠ 1 / 7 ⁠ = 0. 186A35 has period 6 in duodecimal, just as it does in decimal. If b is an integer base ...