Search results
Results from the WOW.Com Content Network
On the other hand, the internally studentized residuals are in the range , where ν = n − m is the number of residual degrees of freedom. If t i represents the internally studentized residual, and again assuming that the errors are independent identically distributed Gaussian variables, then: [2]
A simple example is the process of dividing a sample mean by the sample standard deviation when data arise from a location-scale family. The consequence of "Studentization" is that the complication of treating the probability distribution of the mean, which depends on both the location and scale parameters, has been reduced to considering a ...
The formula for the one-way ANOVA F-test statistic is =, or =. The "explained variance", or "between-group variability" is = (¯ ¯) / where ¯ denotes the sample mean in the i-th group, is the number of observations in the i-th group, ¯ denotes the overall mean of the data, and denotes the number of groups.
In regression analysis, the distinction between errors and residuals is subtle and important, and leads to the concept of studentized residuals. Given an unobservable function that relates the independent variable to the dependent variable – say, a line – the deviations of the dependent variable observations from this function are the ...
The studentized range distribution function arises from re-scaling the sample range R by the sample standard deviation s, since the studentized range is customarily tabulated in units of standard deviations, with the variable q = R ⁄ s. The derivation begins with a perfectly general form of the distribution function of the sample range, which ...
The value of the studentized range, most often represented by the variable q, can be defined based on a random sample x 1, ..., x n from the N(0, 1) distribution of numbers, and another random variable s that is independent of all the x i, and νs 2 has a χ 2 distribution with ν degrees of freedom.
In statistics, an F-test of equality of variances is a test for the null hypothesis that two normal populations have the same variance.Notionally, any F-test can be regarded as a comparison of two variances, but the specific case being discussed in this article is that of two populations, where the test statistic used is the ratio of two sample variances. [1]
Statistical tests are used to test the fit between a hypothesis and the data. [1] [2] Choosing the right statistical test is not a trivial task. [1]The choice of the test depends on many properties of the research question.