enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bode plot - Wikipedia

    en.wikipedia.org/wiki/Bode_plot

    It is usually a combination of a Bode magnitude plot, expressing the magnitude (usually in decibels) of the frequency response, and a Bode phase plot, expressing the phase shift. As originally conceived by Hendrik Wade Bode in the 1930s, the plot is an asymptotic approximation of the frequency response, using straight line segments .

  3. Step response - Wikipedia

    en.wikipedia.org/wiki/Step_response

    The procedure outlined in the Bode plot article is followed. Figure 5 is the Bode gain plot for the two-pole amplifier in the range of frequencies up to the second pole position. The assumption behind Figure 5 is that the frequency f 0 dB lies between the lowest pole at f 1 = 1/(2πτ 1) and the second pole at f 2 = 1/(2πτ 2). As indicated in ...

  4. Spectral density - Wikipedia

    en.wikipedia.org/wiki/Spectral_density

    For transfer functions (e.g., Bode plot, chirp) the complete frequency response may be graphed in two parts: power versus frequency and phase versus frequency—the phase spectral density, phase spectrum, or spectral phase. Less commonly, the two parts may be the real and imaginary parts of the transfer function.

  5. Frequency response - Wikipedia

    en.wikipedia.org/wiki/Frequency_response

    Magnitude response of a low pass filter with 6 dB per octave or 20 dB per decade roll-off. Measuring the frequency response typically involves exciting the system with an input signal and measuring the resulting output signal, calculating the frequency spectra of the two signals (for example, using the fast Fourier transform for discrete signals), and comparing the spectra to isolate the ...

  6. Nichols plot - Wikipedia

    en.wikipedia.org/wiki/Nichols_plot

    The Nichols plot is a plot used in signal processing and control design, named after American engineer Nathaniel B. Nichols. [ 1 ] [ 2 ] [ 3 ] It plots the phase response versus the response magnitude of a transfer function for any given frequency, and as such is useful in characterizing a system's frequency response .

  7. Root locus analysis - Wikipedia

    en.wikipedia.org/wiki/Root_locus_analysis

    The root locus plots the poles of the closed loop transfer function in the complex s-plane as a function of a gain parameter (see pole–zero plot). Evans also invented in 1948 an analog computer to compute root loci, called a "Spirule" (after "spiral" and " slide rule "); it found wide use before the advent of digital computers .

  8. Impulse response - Wikipedia

    en.wikipedia.org/wiki/Impulse_response

    Measuring the impulse response, which is a direct plot of this "time-smearing," provided a tool for use in reducing resonances by the use of improved materials for cones and enclosures, as well as changes to the speaker crossover.

  9. t-distributed stochastic neighbor embedding - Wikipedia

    en.wikipedia.org/wiki/T-distributed_stochastic...

    scikit-learn, a popular machine learning library in Python implements t-SNE with both exact solutions and the Barnes-Hut approximation. Tensorboard, the visualization kit associated with TensorFlow, also implements t-SNE (online version) The Julia package TSne implements t-SNE