Search results
Results from the WOW.Com Content Network
In biochemistry, denaturation is a process in which proteins or nucleic acids lose folded structure present in their native state due to various factors, including application of some external stress or compound, such as a strong acid or base, a concentrated inorganic salt, an organic solvent (e.g., alcohol or chloroform), agitation and radiation, or heat. [3]
As in other mammals, human thermoregulation is an important aspect of homeostasis. In thermoregulation, body heat is generated mostly in the deep organs, especially the liver, brain, and heart, and in contraction of skeletal muscles. [1] Humans have been able to adapt to a great diversity of climates, including hot humid and hot arid.
An enzyme's activity decreases markedly outside its optimal temperature and pH, and many enzymes are (permanently) denatured when exposed to excessive heat, losing their structure and catalytic properties. Some enzymes are used commercially, for example, in the synthesis of antibiotics.
The human body always works to remain in homeostasis. One form of homeostasis is thermoregulation. Body temperature varies in every individual, but the average internal temperature is 37.0 °C (98.6 °F). [1] Sufficient stress from extreme external temperature may cause injury or death if it exceeds the ability of the body to thermoregulate.
Cyanobacterial DesA, [19] an enzyme that can introduce a second cis double bond at the delta-12 position of fatty acid bound to membrane glycerolipids. This enzyme is involved in chilling tolerance; the phase transition temperature of lipids of cellular membranes being dependent on the degree of unsaturation of fatty acids of the membrane lipids.
In humans, a diurnal variation has been observed dependent on the periods of rest and activity, lowest at 11 p.m. to 3 a.m. and peaking at 10 a.m. to 6 p.m. Monkeys also have a well-marked and regular diurnal variation of body temperature that follows periods of rest and activity, and is not dependent on the incidence of day and night ...
In humans, the C-type lysozyme enzyme is encoded by the LYZ gene. [3] [4] Hen egg white lysozyme is thermally stable, with a melting point reaching up to 72 °C at pH 5.0. [5] However, lysozyme in human milk loses activity very quickly at that temperature. [6] Hen egg white lysozyme maintains its activity in a large range of pH (6–9). [7]
[31] [32] By his own account, the discovery was the serendipitous result of unintentional elevated temperature in a laboratory incubator. [33] Ritossa's observations, reported in 1962, [ 34 ] were later described as "the first known environmental stress acting directly on gene activity" [ 31 ] but were not initially widely cited.