Search results
Results from the WOW.Com Content Network
Escape velocity calculations are typically used to determine whether an object will remain in the gravitational sphere of influence of a given body. For example, in solar system exploration it is useful to know whether a probe will continue to orbit the Earth or escape to a heliocentric orbit.
Space velocity may refer to: Space velocity (astronomy) , the velocity of a star in the galactic coordinate system Space velocity (chemistry) , the relation between volumetric flow rate and reactor volume in a chemical reactor
A space vehicle's flight is determined by application of Newton's second law of motion: =, where F is the vector sum of all forces exerted on the vehicle, m is its current mass, and a is the acceleration vector, the instantaneous rate of change of velocity (v), which in turn is the instantaneous rate of change of displacement.
To escape the Solar System from a location at a distance from the Sun equal to the distance Sun–Earth, but not close to the Earth, requires around 42 km/s velocity, but there will be "partial credit" for the Earth's orbital velocity for spacecraft launched from Earth, if their further acceleration (due to the propulsion system) carries them ...
Delta-v (also known as "change in velocity"), symbolized as and pronounced /dɛltə viː/, as used in spacecraft flight dynamics, is a measure of the impulse per unit of spacecraft mass that is needed to perform a maneuver such as launching from or landing on a planet or moon, or an in-space orbital maneuver.
In gravitationally bound systems, the orbital speed of an astronomical body or object (e.g. planet, moon, artificial satellite, spacecraft, or star) is the speed at which it orbits around either the barycenter (the combined center of mass) or, if one body is much more massive than the other bodies of the system combined, its speed relative to the center of mass of the most massive body.
An incoming space rock could collide with our planet in 2032—but the odds are low. ... according to NASA’s calculations, or more than twice the velocity of an Earth-orbiting satellite. It’s ...
Delta-v in feet per second, and fuel requirements for a typical Apollo Lunar Landing mission.In astrodynamics and aerospace, a delta-v budget is an estimate of the total change in velocity (delta-v) required for a space mission.