Search results
Results from the WOW.Com Content Network
The speed of sound is the distance travelled per unit of time by a sound wave as it propagates through an elastic medium. More simply, the speed of sound is how fast vibrations travel. At 20 °C (68 °F), the speed of sound in air, is about 343 m/s (1,125 ft/s; 1,235 km/h; 767 mph; 667 kn), or 1 km in 2.91 s or one mile in 4.69 s.
The speed of sound in any chemical element in the fluid phase has one temperature-dependent value. In the solid phase, different types of sound wave may be propagated, each with its own speed: among these types of wave are longitudinal (as in fluids), transversal, and (along a surface or plate) extensional.
Once the speed of sound in the air was known, this allowed Kundt to calculate the speed of sound in the metal of the resonator rod. The length of the rod L was equal to a half wavelength of the sound in metal, and the distance between the piles of powder d was equal to a half wavelength of the sound in air. So the ratio of the two was equal to ...
where is the Laplace operator, is the acoustic pressure (the local deviation from the ambient pressure), and is the speed of sound. A similar looking wave equation but for the vector field particle velocity is given by
In acoustics, Stokes's law of sound attenuation is a formula for the attenuation of sound in a Newtonian fluid, such as water or air, due to the fluid's viscosity.It states that the amplitude of a plane wave decreases exponentially with distance traveled, at a rate α given by = where η is the dynamic viscosity coefficient of the fluid, ω is the sound's angular frequency, ρ is the fluid ...
The speed of sound in the crystal depends on the mass of the atoms, the strength of their interaction, the pressure on the system, and the polarisation of the spin wave (longitudinal or transverse), among others. For the following, the speed of sound is assumed to be the same for any polarisation, although this limits the applicability of the ...
A rugged ultrasonic thickness gauge determines sample thickness by measuring the amount of time it takes for sound to traverse from the transducer through the material to the back end of a part and back. The ultrasonic thickness gauge then calculates the data based on the speed of the sound through the tested sample.
The speed of sound depends on the medium the waves pass through, and is a fundamental property of the material. The first significant effort towards measurement of the speed of sound was made by Isaac Newton. He believed the speed of sound in a particular substance was equal to the square root of the pressure acting on it divided by its density: