Search results
Results from the WOW.Com Content Network
In coordination chemistry, a coordinate covalent bond, [1] also known as a dative bond, [2] dipolar bond, [1] or coordinate bond [3] is a kind of two-center, two-electron covalent bond in which the two electrons derive from the same atom. The bonding of metal ions to ligands involves this kind of interaction. [4]
Instead of simply assigning a charge (oxidation state) to an atom in the molecule, the covalent bond classification method analyzes the nature of the ligands surrounding the atom of interest. [2] According to this method, the interactions that allow for coordination of the ligand can be classified according to whether it donates two, one, or ...
The bond between a water molecule and the metal ion is a dative covalent bond, with the oxygen atom donating both electrons to the bond. Each coordinated water molecule may be attached by hydrogen bonds to other water molecules. The latter are said to reside in the second coordination sphere.
A linear tetradentate ligand has the four donor atoms in a line and each subsequent donor is connected by one of three bridges. Such a ligand bound to a metal in tetrahedral coordination can only connect in one way, though if the ligand is unsymmetrical then there are two chiral arrangements.
The strong bonding of metals in liquid form demonstrates that the energy of a metallic bond is not highly dependent on the direction of the bond; this lack of bond directionality is a direct consequence of electron delocalization, and is best understood in contrast to the directional bonding of covalent bonds.
A covalent bond forming H 2 (right) where two hydrogen atoms share the two electrons. A covalent bond is a chemical bond that involves the sharing of electrons to form electron pairs between atoms. These electron pairs are known as shared pairs or bonding pairs.
Measurably irreversible covalent bonding between a ligand and target molecule is atypical in biological systems. In contrast to the definition of ligand in metalorganic and inorganic chemistry , in biochemistry it is ambiguous whether the ligand generally binds at a metal site, as is the case in hemoglobin .
σ bonding from electrons in CO's HOMO to metal center d-orbital. π backbonding from electrons in metal center d-orbital to CO's LUMO. The electrons are partially transferred from a d-orbital of the metal to anti-bonding molecular orbitals of CO (and its analogs). This electron-transfer strengthens the metal–C bond and weakens the C–O bond.