Search results
Results from the WOW.Com Content Network
Specified Minimum Yield Strength (SMYS) means the specified minimum yield strength for steel pipe manufactured in accordance with a listed specification 1. This is a common term used in the oil and gas industry for steel pipe used under the jurisdiction of the United States Department of Transportation.
Scope of ASTM A53 Standard ASTM A53 is standard specification for pipe, steel, black and hot dipped, zinc-coated, welded and seamless. This specification covers seamless and welded black and hot-dipped galvanized steel pipe in NPS 1⁄8 to NPS 26 [DN 6 to DN 650] (Note 1), inclusive, with nominal wall thickness (Note 2) as given in Table X2.2 ...
Barlow's formula (called "Kesselformel" [1] in German) relates the internal pressure that a pipe [2] can withstand to its dimensions and the strength of its material.. This approximate formula is named after Peter Barlow, an English mathematician.
For the thin-walled assumption to be valid, the vessel must have a wall thickness of no more than about one-tenth (often cited as Diameter / t > 20) of its radius. [4] This allows for treating the wall as a surface, and subsequently using the Young–Laplace equation for estimating the hoop stress created by an internal pressure on a thin-walled cylindrical pressure vessel:
Nominal Pipe Size (NPS) is a North American set of standard sizes for pipes used for high or low pressures and temperatures. [1] " Nominal" refers to pipe in non-specific terms and identifies the diameter of the hole with a non-dimensional number (for example – 2-inch nominal steel pipe" consists of many varieties of steel pipe with the only criterion being a 2.375-inch (60.3 mm) outside ...
The strength of materials is determined using various methods of calculating the stresses and strains in structural members, such as beams, columns, and shafts. The methods employed to predict the response of a structure under loading and its susceptibility to various failure modes takes into account the properties of the materials such as its yield strength, ultimate strength, Young's modulus ...
The ultimate tensile strength of a material is an intensive property; therefore its value does not depend on the size of the test specimen.However, depending on the material, it may be dependent on other factors, such as the preparation of the specimen, the presence or otherwise of surface defects, and the temperature of the test environment and material.
In one study, strain hardening exponent values extracted from tensile data from 58 steel pipes from natural gas pipelines were found to range from 0.08 to 0.25, [1] with the lower end of the range dominated by high-strength low alloy steels and the upper end of the range mostly normalized steels.