Search results
Results from the WOW.Com Content Network
As a person breathes, the body consumes oxygen and produces carbon dioxide. Base metabolism requires about 0.25 L/min of oxygen from a breathing rate of about 6 L/min, and a fit person working hard may ventilate at a rate of 95 L/min but will only metabolise about 4 L/min of oxygen [10] The oxygen metabolised is generally about 4% to 5% of the inspired volume at normal atmospheric pressure, or ...
Another method of carbon dioxide removal occasionally used in portable rebreathers is to freeze it out, which is possible in a cryogenic rebreather which uses liquid oxygen. The liquid oxygen absorbs heat from the carbon dioxide in a heat exchanger to convert the oxygen to gas, which is sufficient to freeze the carbon dioxide.
Gills are tissues which consist of threadlike structures called filaments. These filaments have many functions and are involved in ion and water transfer as well as oxygen, carbon dioxide, acid and ammonia exchange. [4] Each filament contains a capillary network that provides a large surface area for the exchange of gases and ions. Fish ...
Underwater breathing apparatus can be classified as open circuit, semi-closed circuit, (including gas extenders) or closed circuit (including reclaim systems), based on whether any of the exhaled gas is recycled, and as self-contained or remotely supplied (usually surface-supplied, but also possibly from a lock-out submersible or an underwater habitat), depending on where the source of the ...
Fish gills are organs that allow fish to breathe underwater. Most fish exchange gases like oxygen and carbon dioxide using gills that are protected under gill covers (operculum) on both sides of the pharynx (throat). Gills are tissues that are like short threads, protein structures called filaments. These filaments have many functions including ...
The blood carries oxygen to other parts of the body. Carbon dioxide passes from the blood through the thin gill tissue into the water. Gills or gill-like organs, located in different parts of the body, are found in various groups of aquatic animals, including mollusks, crustaceans, insects, fish, and amphibians.
The combination of gases in the bladder varies. In shallow water fish, the ratios closely approximate that of the atmosphere, while deep sea fish tend to have higher percentages of oxygen. For instance, the eel Synaphobranchus has been observed to have 75.1% oxygen, 20.5% nitrogen, 3.1% carbon dioxide, and 0.4% argon in its swim bladder.
These filaments have many functions and "are involved in ion and water transfer as well as oxygen, carbon dioxide, acid and ammonia exchange. [3] [4] Each filament contains a capillary network that provides a large surface area for exchanging oxygen and carbon dioxide. Fish exchange gases by pulling oxygen-rich water through their mouths and ...