Ads
related to: s adenosyl methionine
Search results
Results from the WOW.Com Content Network
S-Adenosyl methionine (SAM), also known under the commercial names of SAMe, SAM-e, or AdoMet, is a common cosubstrate involved in methyl group transfers, transsulfuration, and aminopropylation. Although these anabolic reactions occur throughout the body, most SAM is produced and consumed in the liver. [ 1 ]
S-Adenosylmethionine synthetase (EC 2.5.1.6), also known as methionine adenosyltransferase (MAT), is an enzyme that creates S-adenosylmethionine (also known as AdoMet, SAM or SAMe) by reacting methionine (a non-polar amino acid) and ATP (the basic currency of energy). [1]
Radical SAM enzymes belong to a superfamily of enzymes that use an iron-sulfur cluster to reductively cleave S-adenosyl-L-methionine (SAM) to generate a radical, usually a 5′-deoxyadenosyl radical (5'-dAdo), as a critical intermediate.
The enzyme adenosylmethionine decarboxylase (EC 4.1.1.50) catalyzes the conversion of S-adenosyl methionine to S-adenosylmethioninamine. Polyamines such as spermidine and spermine are essential for cellular growth under most conditions, being implicated in many cellular processes including DNA, RNA and protein synthesis.
S-adenosyl methionine (SAM) is the precursor to 5′-methylthioadenosine. The pervasive cofactor S-adenosyl methionine (SAM) is the precursor to 5′-methylthioadenosine. The sulfonium group in SAM can cleave in three ways, one involves loss of CH 2 CH 2 CH(NH 3 +)CO 2 −, generating the title compound.
The methionine-derivative S-adenosylmethionine (SAM-e) is a cofactor that serves mainly as a methyl donor. SAM-e is composed of an adenosyl molecule (via 5′ carbon) attached to the sulfur of methionine, therefore making it a sulfonium cation (i.e., three substituents and positive charge).
Radical S-adenosyl methionine domain-containing protein 2 is a protein that in humans is encoded by the RSAD2 gene. RSAD2 is a multifunctional protein in viral processes that is an interferon stimulated gene. [ 5 ]
S-Adenosylmethioninamine is a substrate that is required for the biosynthesis of polyamines including spermidine, spermine, and thermospermine. [1] It is produced by decarboxylation of S -adenosyl methionine .
Ads
related to: s adenosyl methionine