enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quil (instruction set architecture) - Wikipedia

    en.wikipedia.org/wiki/Quil_(instruction_set...

    Quil is being developed for the superconducting quantum processors developed by Rigetti Computing through the Forest quantum programming API. [5] [6] A Python library called pyQuil was introduced to develop Quil programs with higher level constructs. A Quil backend is also supported by other quantum programming environments. [7] [8]

  3. QuTiP - Wikipedia

    en.wikipedia.org/wiki/QuTiP

    QuTiP, short for the Quantum Toolbox in Python, is an open-source computational physics software library for simulating quantum systems, particularly open quantum systems. [1] [2] QuTiP allows simulation of Hamiltonians with arbitrary time-dependence, allowing simulation of situations of interest in quantum optics, ion trapping, superconducting circuits and quantum nanomechanical resonators.

  4. Exact diagonalization - Wikipedia

    en.wikipedia.org/wiki/Exact_diagonalization

    Exact diagonalization is only feasible for systems with a few tens of particles, due to the exponential growth of the Hilbert space dimension with the size of the quantum system. It is frequently employed to study lattice models, including the Hubbard model , Ising model , Heisenberg model , t - J model , and SYK model .

  5. Quantum programming - Wikipedia

    en.wikipedia.org/wiki/Quantum_programming

    Quantum programming is the process of designing or assembling sequences of instructions, called quantum circuits, using gates, switches, and operators to manipulate a quantum system for a desired outcome or results of a given experiment.

  6. Quantum Trajectory Theory - Wikipedia

    en.wikipedia.org/wiki/Quantum_Trajectory_Theory

    Quantum Trajectory Theory (QTT) is a formulation of quantum mechanics used for simulating open quantum systems, quantum dissipation and single quantum systems. [1] It was developed by Howard Carmichael in the early 1990s around the same time as the similar formulation, known as the quantum jump method or Monte Carlo wave function (MCWF) method, developed by Dalibard, Castin and Mølmer. [2]

  7. Lattice QCD - Wikipedia

    en.wikipedia.org/wiki/Lattice_QCD

    [4] [5] At present, lattice QCD is primarily applicable at low densities where the numerical sign problem does not interfere with calculations. Monte Carlo methods are free from the sign problem when applied to the case of QCD with gauge group SU(2) (QC 2 D). Lattice QCD has already successfully agreed with many experiments.

  8. Quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/Quantum_mechanics

    Quantum mechanics is a fundamental theory that describes the behavior of nature at and below the scale of atoms. [2]: 1.1 It is the foundation of all quantum physics, which includes quantum chemistry, quantum field theory, quantum technology, and quantum information science. Quantum mechanics can describe many systems that classical physics cannot.

  9. Rectangular potential barrier - Wikipedia

    en.wikipedia.org/wiki/Rectangular_potential_barrier

    In quantum mechanics, the rectangular (or, at times, square) potential barrier is a standard one-dimensional problem that demonstrates the phenomena of wave-mechanical tunneling (also called "quantum tunneling") and wave-mechanical reflection.