Search results
Results from the WOW.Com Content Network
In this case, the electron capture is an endothermic process and the relationship, E ea = −ΔE(attach) is still valid. Negative values typically arise for the capture of a second electron, but also for the nitrogen atom. The usual expression for calculating E ea when an electron is attached is E ea = (E initial − E final) attach = −ΔE ...
Although the Drude model was fairly successful in describing the electron motion within metals, it has some erroneous aspects: it predicts the Hall coefficient with the wrong sign compared to experimental measurements, the assumed additional electronic heat capacity to the lattice heat capacity, namely per electron at elevated temperatures, is also inconsistent with experimental values, since ...
Electron affinity can be defined in two equivalent ways. First, as the energy that is released by adding an electron to an isolated gaseous atom. The second (reverse) definition is that electron affinity is the energy required to remove an electron from a singly charged gaseous negative ion.
For example, an electron and a positron, each with a mass of 0.511 MeV/c 2, can annihilate to yield 1.022 MeV of energy. A proton has a mass of 0.938 GeV/c 2. In general, the masses of all hadrons are of the order of 1 GeV/c 2, which makes the GeV/c 2 a convenient unit of mass for particle physics: [4]
In recent years, [when?] thermal physics has applied the definition of chemical potential to systems in particle physics and its associated processes. For example, in a quark–gluon plasma or other QCD matter , at every point in space there is a chemical potential for photons , a chemical potential for electrons, a chemical potential for ...
Hess's law states that the change of enthalpy in a chemical reaction is the same regardless of whether the reaction takes place in one step or several steps, provided the initial and final states of the reactants and products are the same. Enthalpy is an extensive property, meaning that its value is proportional to the system size. [4]
Electron binding energy, more commonly known as ionization energy, [3] is a measure of the energy required to free an electron from its atomic orbital or from a solid. The electron binding energy derives from the electromagnetic interaction of the electron with the nucleus and the other electrons of the atom, molecule or solid and is mediated ...
In electrochemistry, the electrochemical potential of electrons (or any other species) is the total potential, including both the (internal, nonelectrical) chemical potential and the electric potential, and is by definition constant across a device in equilibrium, whereas the chemical potential of electrons is equal to the electrochemical ...