enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bending moment - Wikipedia

    en.wikipedia.org/wiki/Bending_moment

    If clockwise bending moments are taken as negative, then a negative bending moment within an element will cause "hogging", and a positive moment will cause "sagging". It is therefore clear that a point of zero bending moment within a beam is a point of contraflexure—that is, the point of transition from hogging to sagging or vice versa.

  3. Euler–Bernoulli beam theory - Wikipedia

    en.wikipedia.org/wiki/Euler–Bernoulli_beam_theory

    Besides deflection, the beam equation describes forces and moments and can thus be used to describe stresses. For this reason, the Euler–Bernoulli beam equation is widely used in engineering, especially civil and mechanical, to determine the strength (as well as deflection) of beams under bending.

  4. Shear and moment diagram - Wikipedia

    en.wikipedia.org/wiki/Shear_and_moment_diagram

    Shear and Bending moment diagram for a simply supported beam with a concentrated load at mid-span. Shear force and bending moment diagrams are analytical tools used in conjunction with structural analysis to help perform structural design by determining the value of shear forces and bending moments at a given point of a structural element such as a beam.

  5. Macaulay's method - Wikipedia

    en.wikipedia.org/wiki/Macaulay's_method

    The starting point is the relation from Euler-Bernoulli beam theory = Where is the deflection and is the bending moment. This equation [7] is simpler than the fourth-order beam equation and can be integrated twice to find if the value of as a function of is known.

  6. Angular momentum of light - Wikipedia

    en.wikipedia.org/wiki/Angular_momentum_of_light

    Light, or more generally an electromagnetic wave, carries not only energy but also momentum, which is a characteristic property of all objects in translational motion. The existence of this momentum becomes apparent in the "radiation pressure " phenomenon, in which a light beam transfers its momentum to an absorbing or scattering object, generating a mechanical pressure on it in the process.

  7. Bending - Wikipedia

    en.wikipedia.org/wiki/Bending

    Simple beam bending is often analyzed with the Euler–Bernoulli beam equation. The conditions for using simple bending theory are: [4] The beam is subject to pure bending. This means that the shear force is zero, and that no torsional or axial loads are present. The material is isotropic (or orthotropic) and homogeneous.

  8. Flexural rigidity - Wikipedia

    en.wikipedia.org/wiki/Flexural_rigidity

    where is the flexural modulus (in Pa), is the second moment of area (in m 4), is the transverse displacement of the beam at x, and () is the bending moment at x. The flexural rigidity (stiffness) of the beam is therefore related to both E {\displaystyle E} , a material property, and I {\displaystyle I} , the physical geometry of the beam.

  9. List of moments of inertia - Wikipedia

    en.wikipedia.org/wiki/List_of_moments_of_inertia

    The moments of inertia of a mass have units of dimension ML 2 ([mass] × [length] 2). It should not be confused with the second moment of area, which has units of dimension L 4 ([length] 4) and is used in beam calculations. The mass moment of inertia is often also known as the rotational inertia, and sometimes as the angular mass.