Search results
Results from the WOW.Com Content Network
The Sellmeier equation is an empirical relationship between refractive index and wavelength for a particular transparent medium. The equation is used to determine the dispersion of light in the medium. It was first proposed in 1872 by Wolfgang Sellmeier and was a development of the work of Augustin Cauchy on Cauchy's equation for modelling ...
Std enthalpy change of formation, Δ f H o solid-1675.7 kJ/mol Standard molar entropy, S o solid: 50.92 J/(mol K) Heat capacity, c p: 89.7248 J/(mol K) Liquid properties Std enthalpy change of formation, Δ f H o liquid-1620.57 kJ/mol Standard molar entropy, S o liquid: 67.24 J/(mol K) Heat capacity, c p: 192.5 J/(mol K) Gas properties Std ...
A. R. Forouhi and I. Bloomer deduced dispersion equations for the refractive index, n, and extinction coefficient, k, which were published in 1986 [1] and 1988. [2] The 1986 publication relates to amorphous materials, while the 1988 publication relates to crystalline.
In optics, Cauchy's transmission equation is an empirical relationship between the refractive index and wavelength of light for a particular transparent material. It is named for the mathematician Augustin-Louis Cauchy , who originally defined it in 1830 in his article "The refraction and reflection of light".
The extremely low coefficient of thermal expansion, about 5.5 × 10 −7 /K (20–320 °C), accounts for its remarkable ability to undergo large, rapid temperature changes without cracking (see thermal shock). Phosphorescence in fused quartz from an extremely intense pulse of UV light in a flashtube, centered at 170 nm
Wolfgang Sellmeier was a German theoretical physicist who made major contributions to the understanding of the interactions between light and matter. [1] In 1872 he published his seminal work Ueber die durch die Aetherschwingungen erregten Mitschwingungen der Körpertheilchen und deren Rückwirkung auf die ersteren, besonders zur Erklärung der ...
ΔT = average global temperature change (°C) E T = cumulative carbon dioxide emissions (Tt C) ΔC A = change in atmospheric carbon (Tt C) and, 1Tt C = 3.7 Tt CO 2. TCRE can also be defined not in terms of temperature response to emitted carbon, but in terms of temperature response to the change in radiative forcing: [10]
On million-year time scales, the carbonate-silicate cycle is a key factor in controlling Earth's climate because it regulates carbon dioxide levels and therefore global temperature. [3] The rate of weathering is sensitive to factors that change how much land is exposed. These factors include sea level, topography, lithology, and vegetation ...