enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Multiplication_algorithm

    In arbitrary-precision arithmetic, it is common to use long multiplication with the base set to 2 w, where w is the number of bits in a word, for multiplying relatively small numbers. To multiply two numbers with n digits using this method, one needs about n 2 operations.

  3. C mathematical functions - Wikipedia

    en.wikipedia.org/wiki/C_mathematical_functions

    C mathematical operations are a group of functions in the standard library of the C programming language implementing basic mathematical functions. [1] [2] All functions use floating-point numbers in one manner or another. Different C standards provide different, albeit backwards-compatible, sets of functions.

  4. Computational complexity of mathematical operations - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    Graphs of functions commonly used in the analysis of algorithms, showing the number of operations versus input size for each function. The following tables list the computational complexity of various algorithms for common mathematical operations.

  5. Schönhage–Strassen algorithm - Wikipedia

    en.wikipedia.org/wiki/Schönhage–Strassen...

    The Schönhage–Strassen algorithm is based on the fast Fourier transform (FFT) method of integer multiplication. This figure demonstrates multiplying 1234 × 5678 = 7006652 using the simple FFT method. Base 10 is used in place of base 2 w for illustrative purposes. Schönhage (on the right) and Strassen (on the left) playing chess in ...

  6. Multiplicative function - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_function

    1 C (n), the indicator function of the set C ⊂ Z, for certain sets C. The indicator function 1 C (n) is multiplicative precisely when the set C has the following property for any coprime numbers a and b: the product ab is in C if and only if the numbers a and b are both themselves in C. This is the case if C is the set of squares, cubes, or k-th

  7. Toom–Cook multiplication - Wikipedia

    en.wikipedia.org/wiki/Toom–Cook_multiplication

    Toom-1.5 (k m = 2, k n = 1) is still degenerate: it recursively reduces one input by halving its size, but leaves the other input unchanged, hence we can make it into a multiplication algorithm only if we supply a 1 × n multiplication algorithm as a base case (whereas the true Toom–Cook algorithm reduces to constant-size base cases). It ...

  8. Karatsuba algorithm - Wikipedia

    en.wikipedia.org/wiki/Karatsuba_algorithm

    Karatsuba multiplication of az+b and cz+d (boxed), and 1234 and 567 with z=100. Magenta arrows denote multiplication, amber denotes addition, silver denotes subtraction and cyan denotes left shift. (A), (B) and (C) show recursion with z=10 to obtain intermediate values. The Karatsuba algorithm is a fast multiplication algorithm.

  9. Lambda calculus - Wikipedia

    en.wikipedia.org/wiki/Lambda_calculus

    PLUS can be thought of as a function taking two natural numbers as arguments and returning a natural number; it can be verified that PLUS 2 3. and 5. are β-equivalent lambda expressions. Since adding m to a number n can be accomplished by adding 1 m times, an alternative definition is: PLUS := λm.λn.m SUCC n [25] Similarly, multiplication ...