enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Oxidative decarboxylation - Wikipedia

    en.wikipedia.org/wiki/Oxidative_decarboxylation

    In contrast to the relatively facile decarboxylation of β-keto acids, the decarboxylation of α-keto acids presents a mechanistic challenge. Thiamine pyrophosphate (TPP) provides the biochemical and enzymological answer. TPP is the key catalytic cofactor used by enzymes catalyzing non-oxidative and oxidative decarboxylation of α-keto acids.

  3. Acetyl-CoA - Wikipedia

    en.wikipedia.org/wiki/Acetyl-CoA

    Pyruvate undergoes oxidative decarboxylation in which it loses its carboxyl group (as carbon dioxide) to form acetyl-CoA, giving off 33.5 kJ/mol of energy. The oxidative conversion of pyruvate into acetyl-CoA is referred to as the pyruvate dehydrogenase reaction. It is catalyzed by the pyruvate dehydrogenase complex. Other conversions between ...

  4. Fatty acid degradation - Wikipedia

    en.wikipedia.org/wiki/Fatty_acid_degradation

    The mitochondrial oxidation of fatty acids takes place in three major steps: β-oxidation occurs to convert fatty acids into 2-carbon acetyl-CoA units. Acetyl-CoA enters into TCA cycle to yield generate reduced NADH and reduced FADH 2. Reduced cofactors NADH and FADH 2 participate in the electron transport chain in the mitochondria to yield ATP ...

  5. OGDH - Wikipedia

    en.wikipedia.org/wiki/OGDH

    This gene encodes a subunit that catalyzes the oxidative decarboxylation of alpha-ketoglutarate to Succinyl-CoA at its active site in the fourth step of the citric acid cycle by acting as a base to facilitate the decarboxylation. The main residues responsible for the catalysis are thought to be His 260, Phe 227, Gln685, His 729, Ser302, and His ...

  6. Branched-chain alpha-keto acid dehydrogenase complex

    en.wikipedia.org/wiki/Branched-chain_alpha-keto...

    This enzyme complex catalyzes the oxidative decarboxylation of branched, short-chain alpha-ketoacids. BCKDC is a member of the mitochondrial α-ketoacid dehydrogenase complex family, which also includes pyruvate dehydrogenase and alpha-ketoglutarate dehydrogenase , key enzymes that function in the Krebs cycle .

  7. Dihydrolipoyl transacetylase - Wikipedia

    en.wikipedia.org/wiki/Dihydrolipoyl_transacetylase

    Pyruvate decarboxylation requires a few cofactors in addition to the enzymes that make up the complex. The first is thiamine pyrophosphate (TPP), which is used by pyruvate dehydrogenase to oxidize pyruvate and to form a hydroxyethyl-TPP intermediate. This intermediate is taken up by dihydrolipoyl transacetylase and reacted with a second ...

  8. Pyruvate decarboxylation - Wikipedia

    en.wikipedia.org/wiki/Pyruvate_decarboxylation

    Pyruvate oxidation is the step that connects glycolysis and the Krebs cycle. [4] In glycolysis, a single glucose molecule (6 carbons) is split into 2 pyruvates (3 carbons each). Because of this, the link reaction occurs twice for each glucose molecule to produce a total of 2 acetyl-CoA molecules, which can then enter the Krebs cycle.

  9. Pyruvate dehydrogenase complex - Wikipedia

    en.wikipedia.org/wiki/Pyruvate_dehydrogenase_complex

    Pyruvate dehydrogenase deficiency (PDCD) can result from mutations in any of the enzymes or cofactors used to build the complex. Its primary clinical finding is lactic acidosis. [18] Such PDCD mutations, leading to subsequent deficiencies in NAD and FAD production, hinder oxidative phosphorylation processes that are key in aerobic respiration.