Search results
Results from the WOW.Com Content Network
In probability theory, the central limit theorem (CLT) states that, under appropriate conditions, the distribution of a normalized version of the sample mean converges to a standard normal distribution. This holds even if the original variables themselves are not normally distributed. There are several versions of the CLT, each applying in the ...
By the classical central limit theorem the properly normed sum of a set of random variables, each with finite variance, will tend toward a normal distribution as the number of variables increases. Without the finite variance assumption, the limit may be a stable distribution that is not normal.
The means and variances of directional quantities are all finite, so that the central limit theorem may be applied to the particular case of directional statistics. [2] This article will deal only with unit vectors in 2-dimensional space (R 2) but the method described can be extended to the general case.
This section illustrates the central limit theorem via an example for which the computation can be done quickly by hand on paper, unlike the more computing-intensive example of the previous section. Sum of all permutations of length 1 selected from the set of integers 1, 2, 3
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file
The central limit theorem is a refinement of ... The Exploratory Software for Confidence Intervals tutorial programs that run under Excel; ... Toggle the table of ...
In probability theory, Lindeberg's condition is a sufficient condition (and under certain conditions also a necessary condition) for the central limit theorem (CLT) to hold for a sequence of independent random variables.
A generalized q-analog of the classical central limit theorem [3] was proposed in 2008, in which the independence constraint for the i.i.d. variables is relaxed to an extent defined by the q parameter, with independence being recovered as q → 1. However, a proof of such a theorem is still lacking. [4]