enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dielectric loss - Wikipedia

    en.wikipedia.org/wiki/Dielectric_loss

    The ESR represents losses in the capacitor. In a low-loss capacitor the ESR is very small (the conduction is high leading to a low resistivity), and in a lossy capacitor the ESR can be large. Note that the ESR is not simply the resistance that would be measured across a capacitor by an ohmmeter. The ESR is a derived quantity representing the ...

  3. Dissipation factor - Wikipedia

    en.wikipedia.org/wiki/Dissipation_factor

    The loss tangent is defined by the angle between the capacitor's impedance vector and the negative reactive axis. If the capacitor is used in an AC circuit, the dissipation factor due to the non-ideal capacitor is expressed as the ratio of the resistive power loss in the ESR to the reactive power oscillating in the capacitor, or

  4. Voltage droop - Wikipedia

    en.wikipedia.org/wiki/Voltage_droop

    In a regulator not employing droop, when the load is suddenly increased very rapidly (i.e. a transient), the output voltage will momentarily sag. Conversely, when a heavy load is suddenly disconnected, the voltage will show a peak. The output decoupling capacitors have to "absorb" these transients before the control loop has a chance to ...

  5. Capacitor - Wikipedia

    en.wikipedia.org/wiki/Capacitor

    Some capacitors may experience a gradual loss of capacitance, increased leakage or an increase in equivalent series resistance (ESR), while others may fail suddenly or even catastrophically. For example, metal-film capacitors are more prone to damage from stress and humidity, but will self-heal when a breakdown in the dielectric occurs.

  6. Dielectric absorption - Wikipedia

    en.wikipedia.org/wiki/Dielectric_absorption

    Dielectric absorption is the name given to the effect by which a capacitor, that has been charged for a long time, discharges only incompletely when briefly discharged.. Although an ideal capacitor would remain at zero volts after being discharged, real capacitors will develop a small voltage from time-delayed dipole discharging, [1] a phenomenon that is also called dielectric relaxation ...

  7. Capacitance - Wikipedia

    en.wikipedia.org/wiki/Capacitance

    An example is the capacitance of a capacitor constructed of two parallel plates both of area separated by a distance . If d {\textstyle d} is sufficiently small with respect to the smallest chord of A {\textstyle A} , there holds, to a high level of accuracy: C = ε A d ; {\displaystyle \ C=\varepsilon {\frac {A}{d}};}

  8. RC time constant - Wikipedia

    en.wikipedia.org/wiki/RC_time_constant

    It is the time required to charge the capacitor, through the resistor, from an initial charge voltage of zero to approximately 63.2% of the value of an applied DC voltage, or to discharge the capacitor through the same resistor to approximately 36.8% of its initial charge voltage.

  9. Open-circuit time constant method - Wikipedia

    en.wikipedia.org/wiki/Open-circuit_time_constant...

    The linear term in jω in this transfer function can be derived by the following method, which is an application of the open-circuit time constant method to this example. Set the signal source to zero. Select capacitor C 2, replace it by a test voltage V X, and replace C 1 by an open circuit.